В физиологии дыхания парциальное давление обозначается символом Р (от англ., pressure — давление), за которым следуют индекс газовой смеси и формула самого газа.
Так, РETСO2 — это парциальное давление углекислого газа в конечной части выдыхаемого газа, а РAСO2 — парциальное давление СО2 в альвеолярном газе.
Например, если вдыхаемый газ содержит 30 % кислорода, 68 % закиси азота и 2 % фторотана (галотана), а атмосферное давление равно 760 мм рт. ст., то
РIО2 = (760 х 30 %) - 228 мм рт. ст.
PIN2O =(760X68%) - 516,8 мм рт. ст.
PIHAL =(760х 2%) = 15,2 мм рт. ст.
Итого: 100% = 760 мм рт. ст.
Зная величину атмосферного давления и парциального давления газа, легко вычислить его процентную концентрацию:
Относительная концентрация газа (%) =
Парциальное давление газа (мм рт. ст.)
= ——————————————————————— 100%
Барометрическое давление (мм рт. ст.)
Парциальное давление — это один из показателей абсолютной концентрации, то есть количества молекул газа в единице объема газовой смеси. При этом концентрация газа выражается через давление, которое обеспечивают его молекулы. Чем больше молекул газа в единице объема, тем выше парциальное давление этого газа.
При колебаниях атмосферного давления соответственно изменяются и парциальные давления газов, отражая изменения их абсолютных концентраций, хотя процентные соотношения компонентов смеси остаются прежними.
Если в рассмотренном нами примере атмосферное давление снижается с 760 до 730 мм рт. ст., то парциальные давления газов также уменьшатся:
PIO2 = (730 X 30%) = 219 мм рт. ст.
PIN2O - (730 X 68 %) - 496,4 мм рт.
PIHAL =(730x 2%) = 14,6 мм рт. ст.
Итого: 100% = 730 мм рт. ст.
Исчисление концентрации газа в единицах давления удобно тем, что предоставляет возможность сравнивать парциальное давление газа в газовой смеси (например, в альвеолярном или вдыхаемом газе) с напряжением этого газа в крови или в тканях и тем самым определять градиент давлений, от которого зависят направление и скорость газообмена в легких и в тканях.
Инфракрасные капнографы измеряют абсолютные концентрации углекислого газа и летучих анестетиков и выражают их в мм рт. ст. или в кПа. Процентная концентрация газа, высвечиваемая на дисплее, всегда является расчетной величиной, для получения которой программа монитора оперирует данными встроенных барометра и термометра.
При использовании данных капнографии следует иметь в виду еще одно обстоятельство. На величину реального парциального давления углекислого газа влияют пары воды, которыми насыщен альвеолярный газ. Парциальное давление воды при 37 °С составляет 47 мм рт.ст., а на долю остальных компонентов альвеолярного газа приходится 760-47 = 713 мм рт. ст. Поэтому парциальному давлению СО2 в альвеолах, равному 40 мм рт. ст., соответствует концентрация этого газа, составляющая
РAСО2 = 40/713 х 100 = 5,6 %.
Перед поступлением в измерительную камеру капнографа проба газа искусственно обезвоживается. При исчезновении любого из компонентов газовой смеси относительные концентрации всех других повышаются. В связи с тем, что капнографы калибруются сухими газами, поправка, связанная с изменением влажности, не вносится, и программное обеспечение капнографа производит пересчет парциального давления в процентную концентрацию, исходя из условий измерения, а не из условий альвеолярной среды. Например, если измеренное парциальное давление СО2 равно 35 мм рт. ст., то при атмосферном давлении 760 мм рт. ст. рассчитанная капнографом относительная концентрация углекислого газа составит
РетСО2 = 35/760 X 100 = 4,6 %.
Несоответствие между измеренной и реальной величинами РETСO2 равно нескольким мм рт. ст. и в клинической практике обычно не берется во внимание.
В капнографах, имеющих встроенный барометр, поправка на колебания атмосферного давления производится автоматически.
Системы газоанализаторов
Все модели капнографов (как, впрочем, и других газоанализаторов) различаются не только по принципу, лежащему в основе измерения, но и по способам доставки газа в измерительную камеру. Таких способов три:
• капнометрия вне дыхательного потока с непрерывным отбором пробы газа (sidestream analysis);
• капнометрия в дыхательном потоке (mainstream analysis);
• компромиссный вариант.
Капнометрия вне дыхательного потока(sidestream analysis) получила наиболее широкое распространение. Суть способа проста и заключается в следующем: из потока вдыхаемого и выдыхаемого газа (например, из интубационной трубки или наркозной маски) небольшая его часть непрерывно откачивается по тонкой пластиковой трубке и подается в измерительную камеру, расположенную внутри монитора (рис. 2.4). После выполнения анализа газ сбрасывается в атмосферу. Если мониторинг применяется во время анестезии, проводимой малопоточным методом (по закрытому контуру), то газ из капнографа возвращается в контур подругой трубке-магистрали. В этом случае перед возвратом в наркозный аппарат газ должен пройти через бактериальный фильтр.
Рис. 2.4. Капнометрия вне дыхательного потока
Капнографы, работающие по этому принципу, имеют систему обезвоживания газовой смеси, встроенную газовую помпу и снабжены одноразовыми комплектами тонких газовых магистралей со специальными адаптерами для подключения к дыхательному контуру.
Газовая помпа обеспечивает всасывание анализируемой пробы газа с постоянной (обычно 150-200 мл/мин) скоростью. При более низкой скорости всасывания точность измерения концентрации и отображения капнограммы снижаются. От скорости всасывания зависит скорость поступления газа в измерительную камеру, то есть задержка измерения.
Поломка помпы — одна из самых частых причин отказа монитора.
Выбирая модель, уточните средний срок службы газовой помпы (так называемую наработку на отказ) и стоимость ее замены. Например, из документации монитора RGM фирмы OHMEDA следует, что средние эксплуатационные расходы, связанные с заменой помпы по истечении срока гарантии, составят 204 доллара в год. Помпы, которыми снабжаются мониторы фирмы DATEX, не нуждаются в замене по меньшей мере 5 лет1.
1Недавно наступило слияние этих фирм под эгидой финского концерна INSTRUMENTARIUM.
Газовая помпа выходит из строя особенно быстро, если монитор часто и подолгу оставляют включенным без необходимости (в промежутках между наркозами или после полной стабилизации дыхания пациента). В комплексных мониторах, как правило, не предусмотрено раздельное включение блоков, поэтому в тех случаях, когда такой монитор применяется только для пульсоксиметрии, помпа газоанализатора работает вхолостую и износ ее ускоряется.
Газовая магистраль — это тонкая гибкая трубка из прозрачного пластика. Ее длина и внутренний диаметр определяются фирмой-изготовителем и обеспечивают заданную скорость доставки газа в анализатор.
Переполнение магистрали конденсатом может приводить к искажению формы капнограммы и нарушению процесса измерения.
Адаптер (пробоотборник) имеет боковой порт для подключения магистрали и выполняется в разных вариантах: это может быть прямой или угловой патрубок, вставляемый между интубационной трубкой (маской, трахеостомической канюлей) и тройником контура наркозного аппарата или респиратора; есть также адаптеры со специальными защитными устройствами, предотвращающими попадание мокроты в магистраль. Универсальный адаптер D-hte (DATEX) позволяет, помимо забора газа, измерять давление в контуре и определять некоторые параметры механики дыхания. Для педиатрических пациентов существуют адаптеры, позволяющие вводить катетер-пробоотборник до уровня бифуркации трахеи, что повышает точность измерения газового состава у детей до 12 лет. У неинтубированных больных применяются адаптеры в форме носовых канюль. Крупные фирмы предоставляют большой выбор адаптеров для самых разных ситуаций.
При подсоединении адаптера необходимо следить, чтобы магистраль отходила от него вверх,— это предотвращает затекание в нее конденсата.
Система обезвоживания газа — пожалуй, самое уязвимое место в конструкции инфракрасного капнографа. От нормального ее функционирования полностью зависит работа монитора. Расходы на обслуживание данной системы, при неудачном выборе модели, могут за несколько лет превысить стоимость самого монитора.
Как упоминалось выше, обезвоживание газовой смеси требуется для того, чтобы не допустить конденсации воды внутри измерительной камеры и повысить точность измерения концентрации СО2.
Самый распространенный способ обезвоживания газа — пропускание его через специальный фильтр, помещенный в кассету-водоотделитель (картридж). Вода, извлеченная из газовой смеси, стекает в прозрачный накопительный резервуар, который по мере заполнения необходимо опорожнять. Поэтому вся система обезвоживания находится снаружи монитора, чаще — на его передней панели, и доступна для обзора и обслуживания.
В некоторых моделях капнографов при переполнении водосборника происходит заброс жидкости в измерительную камеру, что выводит анализатор из строя.
Картриджи, будучи одноразовыми, регенерации не подлежат. К замене картриджей приходится прибегать довольно часто. Так, в модели OXICAP (OHMEDA) картридж при регулярной эксплуатации монитора меняют в среднем один раз в неделю, что выливается в 520 долларов в год. В некоторых моделях капнографов для каждого пациента предусмотрен отдельный фильтр (например, картридж Watercheck фирмы CRITICARE).
Накопление влаги и отказ фильтра происходят особенно быстро при высоком содержании воды во вдыхаемом газе (например, когда больному проводится ИВЛ качественно увлажненной газовой смесью и особенно когда в шланг вдоха респиратора включен аэрозольный ингалятор).
В настоящее время самой эффективной и экономичной системой удаления паров воды из газа является водоуловитель D-fend фирмы DATEX, снабженный гидрофобной мембраной, пропускающей газ и задерживающей воду и микроорганизмы. Средний срок его службы составляет около двух месяцев, а на замену отработавших элементов тратится 96 долларов в год.
Конденсат, стекающий в резервуар, нередко бывает инфицирован, а сам резервуар выступает в роли инкубатора микроорганизмов. Поэтому при опорожнении водосборника необходимо пользоваться резиновыми перчатками и соблюдать прочие меры предосторожности, указанные в документации.
Многие фирмы применяют для извлечения влаги из газа капиллярные трубки, выполненные из полимера нафиона (nation). Этот чрезвычайно дорогой материал выпускается в небольшом количестве единственным заводом, который принадлежит компании Perma Pure Products Inc. Нафион обладает уникальным свойством избирательно пропускать молекулы воды, оставаясь непроницаемым для остальных газов. При прохождении газовой смеси по нафионовой трубке молекулы воды покидают ее просвет, уходя в более сухой окружающий атмосферный воздух. В результате газ на выходе из трубки имеет ту же влажность, что и атмосфера, что вполне приемлемо для нормальной работы прибора. Капнографы с такой системой обезвоживания газа легко узнать по отсутствию на передней панели фильтра с влаго-сборником.
Срок работы нафионовой трубки больше, чем таковой у фильтра, однако периодическая замена данного элемента необходима, и стоит это недешево.
Время реакции системы на внезапное изменение концентрации СО2 (response time) складывается из двух составляющих:
1. Время доставки газовой смеси из дыхательных путей в измерительную камеру (delay time); у систем sidestream оно достигает 1,5 с. Время доставки зависит от скорости откачки газа, а также от длины магистрали. Оно уменьшается при укорочении магистрали.
2. Скорость измерения (rise time) — определяется как период от момента поступления порции газа в измерительную камеру до момента подъема сигнала фотодетектора от нуля до 90 % истинной величины. Скорость измерения зависит от марки измерительной системы и обычно составляет 0,35-0,55 с.
В целом быстродействие инфракрасных капнографов с непрерывным отбором пробы газа соответствует большинству клинических целей — определение частоты дыхания, своевременное выявление гипо- или гипервентиляции, апноэ, разгерметизации системы и пр. Резкое укорочение времени реакции системы требуется лишь в особых случаях, когда необходима синхронизация капнограммы и спирограммы, например для измерения анатомического мертвого пространства или расчета темпа продукции СО2.
Калибровка капнографа осуществляется с целью проверки соответствия силы тока фотодетектора концентрации углекислого газа. Обычно полная калибровка монитора выполняется по двум точкам. Процедура установки нуля производится по атмосферному воздуху, а потому является бесплатной. В некоторых мониторах предусмотрена калибровка по воздуху автоматически при каждом включении. У таких моделей присоединять адаптер к интубационной трубке следует только после сигнала о готовности монитора к работе. Вторую точку прямой находят с помощью специальной калибровочной газовой смеси, содержащей СО2 и другие компоненты в известных концентрациях. Каждая фирма-производитель мониторов выпускает баллончики со сжатой калибровочной газовой смесью, которая, помимо СО2, может также включать N2О, О2и летучие анестетики. К баллонам прилагаются специальные устройства для подачи смеси в монитор и инструкция. Капнографов, работающих по принципу sidestream и не нуждающихся в калибровках, пока еще не создано, так что отсутствие калибровочных баллонов в комплекте поставки прибора означает лишь одно: их забыли заказать при составлении контракта1.
1Еще одна причина, по которой желательно покупать мониторы у авторизоанных дилеров, способных лать полезные рекомендации при составлении контракта.
В связи с тем, что капнограф нередко требует частой калибровки, фирмы стараются до предела упростить эту манипуляцию. Некоторые модели (в частности, OXICAP [OHMEDA]) сами управляют процессом калибровки, выводя на экран соответствующие команды для врача. Периодичность калибровок газовой смесью из баллонов неодинакова: один раз в две недели (OHMEDA), ежемесячно (В&К, MARQUETTE) или два раза в год (DATEX). Соответственно различаются и финансовые затраты на калибровочный газ, составляя от 10 до 100 долларов в год на один монитор.
Из сказанного выше ясно, насколько серьезен вопрос покупки монитора. Последствия недостаточно продуманного выбора фирмы-поставщика или неосведомленности о предстоящих затратах на расходные материалы самые плачевные: отработав некоторое время, дорогостоящий и нужный прибор ляжет мертвым грузом на больничном складе в ожидании списания. Стремительное развитие мониторной техники привело к тому, что темп морального старения модели способен превышать скорость ее физического износа. Помните, что мониторы оправдывают расходы на их приобретение лишь при активном использовании.
Достоинства системы:
• возможность применения легких и дешевых одноразовых адаптеров для присоединения к дыхательным путям;
• защищенность всех сложных, хрупких и дорогостоящих частей измерительной системы, находящихся внутри корпуса прибора;
• наличие адаптеров для самых разных клинических ситуаций;
• возможность мониторинга у неинтубированных больных;
• возможность одновременного определения нескольких газов в одной пробе.
Недостатки системы:
• необходимость в специальном устройстве для удаления паров воды из газовой смеси;
• наличие газовой помпы — самой ненадежной части системы;
• повышенное время реакции измерительной системы (если это имеет значение);
• затраты на приобретение расходных материалов (адаптеров, магистралей, фильтров, калибровочного газа).
Капнометрия в дыхательном потоке(mainstream analysis) распространена меньше, чем предыдущий метод. Адаптер в этой системе представляет собой устанавливаемую между интубационной трубкой и тройником контура кювету, через которую на проток проходит весь вдыхаемый и выдыхаемый газ (рис. 2.5). В ней имеются два сапфировых окошка, прозрачные для ИК-лучей. Адаптеры моделей mainstream бывают одно- или многоразовыми и стоят значительно дороже, чем таковые у капнографов sidestream. На адаптер снаружи надевается съемный датчик, в который вмонтированы источник монохроматического ИК-излучения и вся измерительная система. Конденсации паров воды на сапфировых окошках препятствует подогрев адаптера. Вес датчика может составлять от 10 до 60 г, а цена этого миниатюрного устройства может достигать 1500 долларов. После включения монитора требуется некоторое время для разогрева датчика. Задержка с началом мониторинга невелика и обычно находится в пределах от 20 с до 3 мин. Некоторые капнографы этого типа не нуждаются в периодических калибровках, но требуют регулярного (по крайней мере один раз в год) метрологического контроля датчика.
Рнс. 2.5.Капнометрия в дыхательном потоке
Представители данного класса мониторов — CAPNOGARD, CO2SMO (NOVAMETRIX), CAPNOCHECK (BCI), PROPAQ М106 (PROTOCOL SYSTEMS), ULTRA CAP (NELLCOR-PB) и некоторые другие.
Достоинства системы:
• повышенное быстродействие (время реакции 30-60 мс);
• отсутствие необходимости в обезвоживании газовой смеси;
• оптимальна при анестезии по закрытому контуру.
Недостатки системы:
• увеличенный риск смещения или перегиба интубационной трубки из-за повышенного веса устанавливаемых на ней деталей;
• повышенный риск поломки самой дорогой части монитора — датчика;
• невозможность определения иных газов, кроме CO2;
• невозможность использования разнообразных адаптеров;
• высокая стоимость расходных материалов (адаптера, датчика).
Компромиссный вариантсистемы предложен фирмой NELL-COR и реализован в модели N 1000. Измерительная система капнографа вынесена за пределы корпуса монитора в отдельный небольшой блок вблизи пациента. По сути, это вариант системы sidestream с укороченной магистралью. Достоинства системы:
• сохранение многих преимуществ системы sidestream (использование разнообразных легких и дешевых адаптеров, мультигазовый мониторинг, надежная защита измерительной системы);
• увеличение быстродействия системы за счет резкого укорочения газовой магистрали;
• уменьшение скорости откачки пробы газа в измерительную камеру до 50 мл/мин без потери качества измерения.
Недостаток системы:
• наличие дополнительного блока и возможное появление неудобств, связанных с его размещением на самой дефицитной и загроможденной территории в операционной или в палате интенсивной терапии — в непосредственной близости от пациента.
И наконец, некоторые фирмы предоставляют врачам возможность самостоятельно решать, какой из вышеперечисленных систем пользоваться. Например, в мониторе Capnocheck Dual Stream (фирма BCI, США) предусмотрена возможность применения как одной, так и другой технологии.