Алексеев Е.Г. Электронный учебник по информатике

Алексеев Е.Г. Электронный учебник по информатике

Оглавление

1.1. Концепции информации. 1

1.2. Основные определения. 2

1.3. Классификация информации. 4

2.1. Количественное измерение информации. 5

2.2. Кодирование различных типов информации. 7

3.1. Основные понятия систем счисления. 8

3.2. Виды систем счисления. 8

3.3. Правила перевода чисел из одной системы счисления в другую.. 12

4.1. Этапы развития ЭВМ... 15

4.2. Поколения ЭВМ... 16

5.1. Принципы построения ЭВМ... 17

5.2. Состав системного блока. 19

5.3. Центральный процессор. 21

5.4. Устройства памяти ЭВМ... 22

5.5. Устройства ввода-вывода. 26

6.1. Виды моделей. 32

6.2. Этапы решения задач на ЭВМ... 32

7.1. Алгоритм и его свойства. 34

7.2. Способы записи алгоритмов. 35

8.1. Основные понятия. Алфавит. Синтаксис. Семантика. 38

8.2. Краткая история и классификация языков программирования. 39

8.3. Основные элементы алгоритмического языка. 42

8.4. Инструментальные системы программирования. 45

9.1. Классификация программного обеспечения. 45

9.2. Краткий обзор прикладного программного обеспечения. 46

9.3. Вспомогательные программы.. 48

9.4. Операционные системы.. 49

9.5. Операционная система Windows. 50

10.1. Информационно-поисковые системы и их классификация. 53

10.2. Информационные единицы баз данных. 54

10.3. Модели данных. 54

11.1. Компьютерные вирусы и их классификация. 55

11.2. Средства защиты от вирусов. 57

12.1. Основные характеристики и классификация компьютерных сетей. 59

12.2. Топология сетей. 61

12.4. Сетевое оборудование. 63

13.1. История развития Internet 66

13.2. Структура и принципы работы Интернет. 67

13.3. Протоколы передачи данных. 70

13.4. Подключение к Интернет. 71

13.5. WWW и HTML.. 73

13.6. Браузеры.. 74

13.7. Поиск информации в Интернет. 75

13.8. Электронная почта. 77

13.9. FTP. 80

Концепции информации

Существование множества определений информации обусловлено сложностью, специфичностью и многообразием подходов к толкованию сущности этого понятия. Существуют 3 наиболее распространенные концепции информации, каждая из которых по-своему объясняет ее сущность.

Первая концепция (концепция К. Шеннона), отражая количественно-информационный подход, определяет информацию как меру неопределенности (энтропию) события. Количество информации в том или ином случае зависит от вероятности его получения: чем более вероятным является сообщение, тем меньше информации содержится в нем. Этот подход, хоть и не учитывает смысловую сторону информации, оказался весьма полезным в технике связи и вычислительной технике и послужил основой для измерения информации и оптимального кодирования сообщений. Кроме того, он представляется удобным для иллюстрации такого важного свойства информации, как новизна, неожиданность сообщений.

При таком понимании информация - это снятая неопределенность, или результат выбора из набора возможных альтернатив.

Вторая концепция рассматривает информацию как свойство материи. Ее появление связано с развитием кибернетики и основано на утверждении, что информацию содержат любые сообщения, воспринимаемые человеком или приборами. Наиболее ярко и образно эта концепция информации выражена академиком В.М. Глушковым. Он писал, что "информацию несут не только испещренные буквами листы книги или человеческая речь, но и солнечный свет, складки горного хребта, шум водопада, шелест травы".

То есть, информация как свойство материи создает представление о ее природе и структуре, упорядоченности и разнообразии. Она не может существовать вне материи, а значит, она существовала и будет существовать вечно, ее можно накапливать, хранить и перерабатывать.

Третья концепция основана на логико-семантическом подходе, при котором информация трактуется как знание, причем не любое знание, а та его часть, которая используется для ориентировки, для активного действия, для управления и самоуправления.

Иными словами, информация - это действующая, полезная часть знаний. Представитель этой концепции В. Г. Афанасьев, развивая логико-семантический подход, дает определение социальной информации: "Информация, циркулирующая в обществе, используемая в управлении социальными процессами, является социальной информацией. Она представляет собой знания, сообщения, сведения о социальной форме движения материи и о всех других формах в той мере, в какой она используется обществом..."

Социальная информация - многоуровневое знание. Она характеризует общественные процессы в целом - экономические, политические, социальные, демографические, культурно-духовные и т.д.; конкретные процессы, происходящие в различных ячейках общества - на предприятиях, в кооперативах, семьях и т.д.; а также интересы и стремления различных социальных групп - рабочего класса, молодежи, пенсионеров, женщин и др. В самом общем смысле под социальной информацией понимают знания, сообщения, сведения о социальной форме движения материи и о всех других ее формах в той мере, в какой они используются обществом, вовлеченными в орбиту общественной жизни. То есть информация есть содержание логического мышления, которое, воспринимаясь с помощью слышимого или видимого слова, может быть использована людьми в их деятельности.

Рассмотренные подходы в определенной мере дополняют друг друга, освещают различные стороны сущности понятия информации и облегчают тем самым систематизацию ее основных свойств. Обобщив данные подходы, можно дать следующее определение информации:

Информация - это сведения, снимающие неопределенность об окружающем мире, которые являются объектом хранения, преобразования, передачи и использования. Сведения - это знания выраженные в сигналах, сообщениях, известиях, уведомлениях и т.д.

1.2. Основные определения

Информатика - (от французского information - информация и automatioque - автоматика) - это область научно-технической деятельности, занимающаяся исследованием процессов получения, передачи, обработки, хранения и представления информации, решением проблем создания, внедрения и использования информационной техники и технологии во всех сферах общественной жизни.

Основная задача информатики заключается в определении общих закономерностей, в соответствии с которыми происходит создание научной информации, ее преобразование, передача и использование в различных сферах деятельности человека. Прикладные задачи заключаются в разработке более эффективных методов и средств осуществления информационных процессов, в определении способов оптимальной научной коммуникации с широким применением технических средств.

В структуре информатики как науки выделяют алгоритмическую, программную техническую области. Информатика входит в состав кибернетики, изучающей общую теорию управления и передачи информации. Кибернетика - наука об общих законах получения, хранения, передачи и обработки информации в сложных системах. Под сложными системами понимаются технические, биологические и социальные системы. Кибернетика пригодна для исследования любой системы, которая может записывать, накапливать и обрабатывать информацию, благодаря чему ее можно использовать в целях управления.

Информационная система - это организованная человеком система сбора, хранения, обработки и выдачи информации, необходимой для эффективного функционирования субъектов и объектов управления. Данные системы являются средством удовлетворения потребностей управления в информации, которое заключается в том, чтобы в нужный момент из соответствующих источников получать информацию, которая должна быть предварительно систематизирована и определенным образом обработана.

К компонентам информационной системы относятся:

- информация, необходимая для выполнения одной или нескольких функций управления;

- персонал, обеспечивающий функционирование информационной системы;

- технические средства;

- методы и процедуры сбора и переработки информации.

Информационные системы, как и любые другие системы, помимо структуры характеризуются функциями, которые они выполняют. С технологической точки зрения их функции делятся на подготовительные и основные. Подготовительные заключаются в фиксации, сборе данных, кодировании и записи их на машинные носители, вводе в память электронно-вычислительных машин и систематизированном хранении. Основные функции сводятся к поиску или содержательной обработке информации, документальному оформлению и размножению результатов поиска и обработки, передаче выходной информации потребителям.

Информационные системы делятся на три класса:

- не производящие качественного изменения информации (учетные, следящие, прогнозирующие, справочные системы);

- анализирующие информацию (аналитические, советующие, прогнозирующие, диагностические системы);

- вырабатывающие решения (управляющие, планирующие системы).

Информационные системы включают в себя функциональные компоненты, компоненты системы обработки данных, организационные компоненты. Функциональные компоненты представляют собой подсистемы обработки информационных ориентиров по определенному функциональному признаку. Например, бухгалтерский учет и отчетность; технико-экономическое планирование; бизнес-план и т.д. Компоненты системы обработки данных предназначены для сбора и переноса информации на машинные носители, ввода информации в ЭВМ и контроля ввода, создания и ведения внутримашинной информационной базы, обработки информации на ЭВМ (накопление, сортировка, корректировка, выборка, арифметическая и логическая обработка), вывода информации; управления вычислительными процессами в вычислительных сетях. Организационные компоненты информационной системы представляют собой совокупность методов и средств для совершенствования организации структурных объектов, штатного расписания, должностных инструкций персонала.

Информационные технологии – это целенаправленный процесс преобразования информации, использующий совокупность средств и методов сбора, обработки, хранения и передачи информации. Как и многие другие технологии, информационная технология должна отвечать следующим требованиям:

· обеспечивать высокую степень деления всего процесса обработки информации на составляющие компоненты;

· включать весь набор инструментов, необходимых для достижения поставленной цели;

· отдельные компоненты должны быть стандартизированы и унифицированы.

Информатизация – внедрение информационных технологий во все сферы человеческой деятельности

Инфосфера – совокупное информационное пространство.

Классификация информации

1. Информация подразделяется по форме представления на 2 вида:

- дискретная форма представления информации - это пос­ледовательность символов, характеризующая прерывистую, изменяющуюся величину (количество дорожно-транспортных происшествий, количество тяжких преступлений и т.п.);

- аналоговая или непрерывная форма представления информации - это величина, характеризующая процесс, не имеющий перерывов или промежутков (температура тела человека, скорость автомобиля на определенном участке пути и т.п.).

2. По области возникновения выделяют информацию:

- элементарную (механическую), которая отражает процессы, явления неодушевленной природы;

- биологическую, которая отражает процессы животного и растительного мира;

- социальную, которая отражает процессы человеческого общества.

3. По способу передачи и восприятия различают следующие виды инфор­мации:

- визуальную, передаваемую видимыми образами и символами;

- аудиальную, передаваемую звуками;

- тактильную, передаваемую ощущениями;

- органолептическую, передаваемую запахами и вкусами;

- машинную, выдаваемую и воспринимаемую средствами вычис­лительной техники.

4. Информацию, создаваемую и используемую человеком, по общест­венному назначению можно разбить на три вида:

- личную, предназначенную для конкретного человека;

- массовую, предназначенную для любого желающего ее пользоваться (общественно-политическая, научно-популярная и т.д.) ;

- специальную, предназначенную для использования узким кругом лиц, занимающихся решением сложных специальных задач в области науки, техники, экономики.

5. По способам кодирования выделяют следующие типы информации:

- символьную, основанную на использовании символов - букв, цифр, знаков и т. д. Она является наиболее простой, но практически применяется только для передачи несложных сигналов о различных событиях. Примером может служить зеленый свет уличного светофора, который сообщает о возможности начала движения пешеходам или водителям автотранспорта.

- текстовую, основанную на использовании комбинаций символов. Здесь так же, как и в предыдущей форме, используются символы: буквы, цифры, математические знаки. Однако информация заложена не только в этих символах, но и в их сочетании, порядке следования. Так, слова КОТ и ТОК имеют одинаковые буквы, но содержат различную информацию. Благодаря взаимосвязи символов и отображению речи человека текстовая информация чрезвычайно удобна и широко используется в деятельности человека: книги, брошюры, журналы, различного рода документы, аудиозаписи кодируются в текстовой форме.

- графическую, основанную на использовании произвольного сочетания в пространстве графических примитивов. К этой форме относятся фотографии, схемы, чертежи, рисунки, играющие большое значение в деятельности человек.

Свойства информации можно рассматривать в трех аспектах: техническом - это точность, надежность, скорость передачи сигналов и т.д.; семантическом - это передача смысла текста с помощью кодов и прагматическом - это насколько эффективно информация влияет на поведение объекта.

Основные понятия систем счисления

Система счисления - это совокупность правил и приемов записи чисел с помощью набора цифровых знаков. Количество цифр, необходимых для записи числа в системе, называют основанием системы счисления. Основание системы записывается в справа числа в нижнем индексе: Алексеев Е.Г. Электронный учебник по информатике - student2.ru ; Алексеев Е.Г. Электронный учебник по информатике - student2.ru ; Алексеев Е.Г. Электронный учебник по информатике - student2.ru и т. д.

Различают два типа систем счисления:

o позиционные, когда значение каждой цифры числа определяется ее позицией в записи числа;

o непозиционные, когда значение цифры в числе не зависит от ее места в записи числа.

Примером непозиционной системы счисления является римская: числа IX, IV, XV и т.д. Примером позиционной системы счисления является десятичная система, используемая повседневно.

Любое целое число в позиционной системе можно записать в форме многочлена:

Алексеев Е.Г. Электронный учебник по информатике - student2.ru

где S - основание системы счисления;

Алексеев Е.Г. Электронный учебник по информатике - student2.ru - цифры числа, записанного в данной системе счисления;

n - количество разрядов числа.

Пример. Число Алексеев Е.Г. Электронный учебник по информатике - student2.ru запишется в форме многочлена следующим образом:

Алексеев Е.Г. Электронный учебник по информатике - student2.ru

Виды систем счисления

Римская система счисления является непозиционной системой. В ней для записи чисел используются буквы латинского алфавита. При этом буква I всегда означает единицу, буква - V пять, X - десять, L - пятьдесят, C - сто, D - пятьсот, M - тысячу и т.д. Например, число 264 записывается в виде CCLXIV. При записи чисел в римской системе счисления значением числа является алгебраическая сумма цифр, в него входящих. При этом цифры в записи числа следуют, как правило, в порядке убывания их значений, и не разрешается записывать рядом более трех одинаковых цифр. В том случае, когда за цифрой с большим значением следует цифра с меньшим, ее вклад в значение числа в целом является отрицательным. Типичные примеры, иллюстрирующие общие правила записи чисел в римской система счисления, приведены в таблице.

Таблица 2. Запись чисел в римской системе счисления

I II III IV V
VI VII VIII IX X
XI XIII XVIII XIX XXII
XXXIV XXXIX XL LX XCIX
CC CDXXXVIII DCXLIX CMXCIX MCCVII
MMXLV MMMDLV MMMDCLXXVIII MMMCM MMMCMXCIX

Недостатком римской системы является отсутствие формальных правил записи чисел и, соответственно, арифметических действий с многозначными числами. По причине неудобства и большой сложности в настоящее время римская система счисления используется там, где это действительно удобно: в литературе (нумерация глав), в оформлении документов (серия паспорта, ценных бумаг и др.), в декоративных целях на циферблате часов и в ряде других случаев.

Десятичная система счисления – в настоящее время наиболее известная и используемая. Изобретение десятичной системы счисления относится к главным достижениям человеческой мысли. Без нее вряд ли могла существовать, а тем более возникнуть современная техника. Причина, по которой десятичная система счисления стала общепринятой, вовсе не математическая. Люди привыкли считать в десятичной системе счисления, потому что у них по 10 пальцев на руках.

Древнее изображение десятичных цифр (рис. 1) не случайно: каждая цифра обозначает число по количеству углов в ней. Например, 0 - углов нет, 1 - один угол, 2 - два угла и т.д. Написание десятичных цифр претерпело существенные изменения. Форма, которой мы пользуемся, установилась в XVI веке.

Алексеев Е.Г. Электронный учебник по информатике - student2.ru

Десятичная система впервые появилась в Индии примерно в VI веке новой эры. Индийская нумерация использовала девять числовых символов и нуль для обозначения пустой позиции. В ранних индийских рукописях, дошедших до нас, числа записывались в обратном порядке - наиболее значимая цифра ставилась справа. Но вскоре стало правилом располагать такую цифру с левой стороны. Особое значение придавалось нулевому символу, который вводился для позиционной системы обозначений. Индийская нумерация, включая нуль, дошла и до нашего времени. В Европе индусские приёмы десятичной арифметики получили распространение в начале ХIII в. благодаря работам итальянского математика Леонардо Пизанского (Фибоначчи). Европейцы заимствовали индийскую систему счисления у арабов, назвав ее арабской. Это исторически неправильное название удерживается и поныне.

Десятичная система использует десять цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, а также символы “+” и “–” для обозначения знака числа и запятую или точку для разделения целой и дробной частей числа.

В вычислительных машинах используется двоичная система счисления, её основание - число 2. Для записи чисел в этой системе используют только две цифры - 0 и 1. Вопреки распространенному заблуждению, двоичная система счисления была придумана не инженерами-конструкторами ЭВМ, а математиками и философами задолго до появления компьютеров, еще в ХVII - ХIХ веках. Первое опубликованное обсуждение двоичной системы счисления принадлежит испанскому священнику Хуану Карамюэлю Лобковицу (1670 г.). Всеобщее внимание к этой системе привлекла статья немецкого математика Готфрида Вильгельма Лейбница, опубликованная в 1703 г. В ней пояснялись двоичные операции сложения, вычитания, умножения и деления. Лейбниц не рекомендовал использовать эту систему для практических вычислений, но подчёркивал её важность для теоретических исследований. Со временем двоичная система счисления становится хорошо известной и получает развитие.

Выбор двоичной системы для применения в вычислительной технике объясняется тем, что электронные элементы - триггеры, из которых состоят микросхемы ЭВМ, могут находиться только в двух рабочих состояниях.

С помощью двоичной системы кодирования можно зафиксировать любые данные и знания. Это легко понять, если вспомнить принцип кодирования и передачи информации с помощью азбуки Морзе. Телеграфист, используя только два символа этой азбуки - точки и тире, может передать практически любой текст.

Двоичная система удобна для компьютера, но неудобна для человека: числа получаются длинными и их трудно записывать и запоминать. Конечно, можно перевести число в десятичную систему и записывать в таком виде, а потом, когда понадобится перевести обратно, но все эти переводы трудоёмки. Поэтому применяются системы счисления, родственные двоичной - восьмеричная и шестнадцатеричная. Для записи чисел в этих системах требуется соответственно 8 и 16 цифр. В 16-теричной первые 10 цифр общие, а дальше используют заглавные латинские буквы. Шестнадцатеричная цифра A соответствует десятеричному числу 10, шестнадцатеричная B – десятичному числу 11 и т. д. Использование этих систем объясняется тем, что переход к записи числа в любой из этих систем от его двоичной записи очень прост. Ниже приведена таблица соответствия чисел, записанных в разных системах.

Таблица 3. Соответствие чисел, записанных в различных системах счисления

Десятичная Двоичная Восьмеричная Шестнадцатеричная
A
B
C
D
E
F

Этапы развития ЭВМ

Первая страница в истории создания вычислительных машин связана с именем французского философа, писателя, математика и физика Блеза Паскаля. В 1641-42 году он сконструировал механический вычислитель, который позволил складывать и вычитать числа.

В 1673 году немецкий ученый Готфрид Лейбниц построил первую счетную машину, способную выполнять все четыре действия арифметики. Она послужила прототипом арифмометров. На протяжении 19 века было создано много конструкций арифмометров, повысились их надежность и точность вычислений. Они получили очень широкое распространение.

Существенный вклад в совершенствование счетных машин внесли ученые и конструкторы России: Якобсон, Слободский, Штоффель, Куммер, Чебышев. В 1878 году русский учёный П. Чебышев предложил счётную машину, выполнявшую сложение и вычитание многозначных чисел.

Петербургский инженер Однер изобрел арифмометр с зубчаткой, имеющей переменное число зубьев. Его конструкция оказалась настолько совершенна, (прибор позволял довольно быстро выполнять все четыре арифметических действия) что арифмометры этого типа выпускались с 1873 года в течение почти ста лет. И только в 30-е годы XX столетия в нашей стране был разработан более совершенный арифмометр – “Феликс”. Эти счётные устройства использовались несколько десятилетий.

В начале 19 века (1823 – 1834) английский математик Чарльз Беббидж сформулировал основные положения, которые должны лежать в основе конструкции вычислительной машины принципиально нового типа. Задуманный проект машины содержал все основные устройства вычислительных машин: память, арифметическое устройство, устройство управления, устройства ввода-вывода. Реализовать проект этой машины не удалось из-за низкого уровня развития машиностроения. Однако вычислительные программы для этой машины были созданы дочерью Джоржа Байрона Адой Лавлейс, которая по праву считается первой программисткой.

Только через 100 лет в 40-х годах 20 века удалось создать программируемую счетную машину на основе электромеханического реле. Эти машины не успели даже начать выпускать серийно, как появились первые ЭВМ на основе радиоламп.

Первая ЭВМ "Эниак" была создана в США в 1946 г. В группу создателей входил выдающийся ученый 20 века Джон фон Нейман, который и предложил основные принципы построения ЭВМ: переход к двоичной системе счисления для представления информации и принцип хранимой программы. Программу вычислений предлагалось помещать в запоминающем устройстве ЭВМ, что обеспечивало бы автоматический режим выполнения команд и, как следствие, увеличение быстродействия ЭВМ.

Одновременно над проектами ЭВМ работали в Англии и России, где первая ЭВМ, получившая название МЭСМ (малая электронная счетная машина) была разработана в 1950 году, а первая большая ЭВМ - БЭСМ в 1952г. С этого момента началось бурное развитие вычислительной техники. Можно выделить пять этапов в развитии электронных вычислительных машин.

o 40-50 годы 20 века - первые ЭВМ в США и СССР;

o 50-60 годы 20 века - первые языки программирования;

o 60-70 годы 20 века - первые АСУ, САПР, ЕС ЭВМ;

o 70-80 годы 20 века - первые персональные компьютеры;

o 80-90 годы 20 века - массовое применение персональных компьютеров.

Поколения ЭВМ

Все этапы развития ЭВМ принято условно делить на поколения.

Первое поколение создавалось на основе вакуумных электроламп, машина управлялась с пульта и перфокарт с использованием машинных кодов. Эти ЭВМ размещались в нескольких больших металлических шкафах, занимавших целые залы.

Втрое поколение появилось в 60-е годы 20 века. Элементы ЭВМ выполнялись на основе полупроводниковых транзисторов. Эти машины обрабатывали информацию под управлением программ на языке Ассемблер. Ввод данных и программ осуществлялся с перфокарт и перфолент.

Третье поколение выполнялось на микросхемах, содержавших на одной пластинке сотни или тысячи транзисторов. Пример машины третьего поколения - ЕС ЭВМ. Управление работой этих машин происходило с алфавитно-цифровых терминалов. Для управления использовались языки высокого уровня и Ассемблер. Данные и программы вводились как с терминала, так и с перфокарт и перфолент.

Четвертое поколение было создано на основе больших интегральных схем (БИС). Наиболее яркие представители четвертого поколения ЭВМ - персональные компьютеры (ПК). Персональной называется универсальная однопользовательская микроЭВМ. Связь с пользователем осуществлялась посредством цветного графического дисплея с использованием языков высокого уровня.

Пятое поколение создано на основе сверхбольших интегральных схем (СБИС), которые отличаются колоссальной плотностью размещения логических элементов на кристалле.

Предполагается, что в будущем широко распространится ввод информации в ЭВМ с голоса, общения с машиной на естественном языке, машинное зрение, машинное осязание, создание интеллектуальных роботов и робототехнических устройств.

Принципы построения ЭВМ

Основные принципы построения ЭВМ были сформулированы американским учёным Джоном фон Нейманом в 40-х годах 20 века:

1. Любую ЭВМ образуют три основные компоненты: процессор, память и устройства ввода-вывода (УВВ).

Алексеев Е.Г. Электронный учебник по информатике - student2.ru

2. Информация, с которой работает ЭВМ делится на два типа:

o набор команд по обработке (программы);

o данные подлежащие обработке.

3. И команды, и данные вводятся в память (ОЗУ) – принцип хранимой программы.

4. Руководит обработкой процессор, устройство управления (УУ) которого выбирает команды из ОЗУ и организует их выполнение, а арифметико-логическое устройство (АЛУ) проводит арифметические и логические операции над данными.

5. С процессором и ОЗУ связаны устройства ввода-вывода (УВВ).

Архитектура современных персональных компьютеров основана на магистрально-модульном принципе. Информационная связь между устройствами компьютера осуществляется через системную шину (другое название - системная магистраль).

Шина - это кабель, состоящий из множества проводников. По одной группе проводников - шине данных передаётся обрабатываемая информация, по другой - шине адреса - адреса памяти или внешних устройств, к которым обращается процессор. Третья часть магистрали - шина управления, по ней передаются управляющие сигналы (например, сигнал готовности устройства к работе, сигнал к началу работы устройства и др).

Системная шина характеризуется тактовой частотой и разрядностью. Количество одновременно передаваемых по шине бит называется разрядностью шины. Тактовая частота характеризует число элементарных операций по передаче данных в 1 секунду. Разрядность шины измеряется в битах, тактовая частота – в мегагерцах.

Всякая информация, передаваемая от процессора к другим устройствам по шине данных, сопровождается адресом, передаваемым по адресной шине. Это может быть адрес ячейки памяти или адрес периферийного устройства. Необходимо, чтобы разрядность шины позволила передать адрес ячейки памяти. Таким образом, словами разрядность шины ограничивает объем оперативной памяти ЭВМ, он не может быть больше чем Алексеев Е.Г. Электронный учебник по информатике - student2.ru , где n – разрядность шины. Важно, чтобы производительности всех подсоединённых к шине устройств были согласованы. Неразумно иметь быстрый процессор и медленную память или быстрый процессор и память, но медленный винчестер.

Ниже представлена схема устройства компьютера, построенного по магистральному принципу:

Алексеев Е.Г. Электронный учебник по информатике - student2.ru

В современных ЭВМ реализован принцип открытой архитектуры, позволяющий пользователю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости её модернизацию. Конфигурацией компьютера называют фактический набор компонентов ЭВМ, которые составляют компьютер. Принцип открытой архитектуры позволяет менять состав устройств ЭВМ. К информационной магистрали могут подключаться дополнительные периферийные устройства, одни модели устройств могут заменяться на другие.

Аппаратное подключение периферийного устройства к магистрали на физическом уровне осуществляется через специальный блок - контроллер (другие названия - адаптер, плата, карта). Для установки контроллеров на материнской плате имеются специальные разъёмы - слоты.

Программное управление работой периферийного устройства производится через программу - драйвер, которая является компонентой операционной системы. Так как существует огромное количество разнообразных устройств, которые могут быть установлены в компьютер, то обычно к каждому устройству поставляется драйвер, взаимодействующий непосредственно с этим устройством.

Связь компьютера с внешними устройствами осуществляется через порты – специальные разъёмы на задней панели компьютера. Различают последовательные и параллельные порты. Последовательные (COM – порты) служат для подключения манипуляторов, модема и передают небольшие объёмы информации на большие расстояния. Параллельные (LPT - порты) служат для подключения принтеров, сканеров и передают большие объёмы информации на небольшие расстояния. В последнее время широкое распространение получили последовательные универсальные порты (USB), к которым можно подключать различные устройства.

Минимальная конфигурация компьютера включает в себя: системный блок, монитор, клавиатуру и мышь.

Состав системного блока

Системный блок – основная часть компьютера. Он состоит из металлического корпуса, в котором располагаются основные компоненты компьютера. С ним соединены кабелями клавиатура, мышь и монитор. Внутри системного блока расположены:

· микропроцессор, который выполняет все поступающие команды, производит вычисления и управляет работой всех компонентов компьютера;

· оперативная память, предназначенная для временного хранения программ и данных;

· системная шина, осуществляющая информационную связь между устройствами компьютера;

· материнская плата, на которой находятся микропроцессор, системная шина, оперативная память, коммуникационные разъемы, микросхемы управления различными компонентами компьютера, счётчик времени, системы индикации и защиты;

· блок питания, преобразующий электропитание сети в постоянный ток низкого напряжения, подаваемый на электронные схемы компьютера;

· вентиляторы для охлаждения греющихся элементов;

· устройства внешней памяти, к которым относятся накопители на гибких и жестких магнитных дисках, дисковод для компакт-дисков СD-ROM, предназначенные для длительного хранения информации.

Аппаратной основой системного блока является материнская плата - самостоятельный элемент, который управляет внутренними связями и с помощью системы прерываний взаимодействует с внешними устройствами. На материнской плате расположены все важнейшие микросхемы.

Персональные компьютеры делятся на стационарные и портативные. Стационарные обычно устанавливаются рабочем столе. Портативные компьютеры делятся на следующие категории:

1. переносные (portable), которые имеют небольшую массу и габариты и поддаются транспортировке одним человеком;

2. наколенные (laptop), выполненные в виде дипломата;

3. блокнотные (notebook), имеющие габариты большого блокнота;

4. карманные (pocket), которые помещаются в карман.

В соответствии с вышеприведенной классификацией, системные блоки могут иметь следующие типы корпусов:

Вставить

Центральный процессор

Центральный процессор - это центральное устройство компьютера, которое выполняет операции по обработке данных и управляет периферийными устройствами компьютера. У компьютеров четвёртого поколения и старше функции центрального процессора выполняет микропроцессор на основе СБИС, содержащей несколько миллионов элементов, конструктивно созданный на полупроводниковом кристалле путём применения сложной микроэлектронной технологии.

В состав центрального процессора входят:

· устройство управления (УУ);

· арифметико-логическое устройство (АЛУ);

· запоминающее устройство (ЗУ) на основе регистров процессорной памяти и кэш-памяти процессора;

· генератор тактовой частоты (ГТЧ).

Устройство управления организует процесс выполнения программ и координирует взаимодействие всех устройств ЭВМ во время её работы.

Арифметико-логическое устройство выполняет арифметические и логические операции над данными: сложение, вычитание, умножение, деление, сравнение и др.

Запоминающее устройство - это внутренняя память процессора. Регистры служит промежуточной быстрой памятью, используя которые, процессор выполняет расчёты и сохраняет промежуточные результаты. Для ускорения работы с оперативной памятью используется кэш-память, в которую с опережением подкачиваются команды и данные из оперативной памяти, необходимые процессору для последующих операций.

Генератор тактовой частоты генерирует электрические импульсы, синхронизирующие работу всех узлов компьютера. В ритме ГТЧ работает центральный процессор.

К основным характеристикам процессора относятся:

· Быстродействие (вычислительная мощность) – это среднее число операций процессора в секунду.

· Тактовая частота в МГц. Тактовая частота равна количеству тактов в секунду. Такт - это промежуток времени между началом подачи текущего импульса ГТЧ и началом подачи следующего. Характерные тактовые частоты микропроцессоров: 40 МГц, 66 МГц, 100 МГц, 130 МГц, 166 МГц, 200 МГц, 333 МГц, 400 МГц, 600 МГц, 800 МГц, 1000 МГц и т. д. До 3ГГц Тактовая частота отражает уровень промышленной технологии, по которой изготавливался данный процессор. Она также характеризирует и компьютер, поэтому по названию модели микропроцессора можно сост<

Наши рекомендации