Вероятностный подход к измерению информации
Любая информация может рассматриваться как уменьшение неопределенности наших знаний об окружающем мире (в теории информации принято говорить именно об уменьшении неопределенности, а не об увеличении объема знаний). Математически это высказывание эквивалентно простой формуле
I = H1 – H2
где I — это количество информации, а H1 и H2 — начальная и конечная неопределенность соответственно (очевидно, что H1 l H2). Величину H, которая описывает степень неопределенности, в литературе принято называть энтропиRей.
Важным частным случаем является ситуация, когда некоторое событие с несколькими возможными исходами уже произошло, а, значит, неопределенность его результата исчезла. Тогда H2 = 0 и формула для информации упрощается:
I = H
Таким образом, энтропия опыта равна той информации, которую мы получаем в результате его осуществления. И наоборот: информация, получаемая из опыта, может быть вычислена через его энтропию. Очевидно, что единицы измерения информации и энтропии совпадают.
Вычисление энтропии при вероятностном подходе базируется на рассмотрении данных о результате некоторого случайного события, т.е. события, которое может иметь несколько исходов. Случайность события заключается в том, что реализация того или иного исхода имеет некоторую степень неопределенности.
Пусть, например, абсолютно незнакомый нам ученик сдает экзамен, результатом которого может служить получение оценок 2, 3, 4 или 5. Поскольку мы ничего не знаем о данном ученике, то степень неопределенности всех перечисленных результатов сдачи экзамена совершенно одинакова. Напротив, если нам известно, как он учится, то уверенность в некоторых исходах будет больше, чем в других: так, отличник скорее всего сдаст экзамен на пятерку, а получение двойки для него — это нечто почти невероятное.
Наиболее просто определить количество информации в случае, когда все исходы события могут реализоваться с равной долей вероятности. В этом случае для вычисления информации используется формула Хартли. В более сложной ситуации, когда исходы события ожидаются с разной степенью уверенности, требуются более сложные вычисления по формуле Шеннона, которую обычно выносят за рамки школьного курса информатики. Очевидно, что формула Хартли является некоторым частным случаем более общей формулы Шеннона.
Формула Хартли была предложена в 1928 году американским инженером Р.Хартли. Она связывает количество равновероятных состояний N с количеством информации I в сообщении о том, что любое из этих состояний реализовалось. Наиболее простая форма для данной формулы записывается следующим образом:
2I = N
Причем обычно значение N известно, а I приходится подбирать, что не совсем удобно. Поэтому те, кто знает математику получше, предпочитают преобразовать данную формулу так, чтобы сразу выразить искомую величину I в явном виде:
I = log2 N
Важный частный случай получается из приведенной формулы при N = 2, когда результатом вычисления является единичное значение. Единица информации носит название бит (от англ. BInary digiT — двоичная цифра); таким образом, 1 бит — это информация о результате опыта с двумя равновероятными исходами. Чем больше возможных исходов, тем больше информации в сообщении о реализации одного из них.
Пример 1. Из колоды выбрали 16 карт (все “картинки” и тузы) и положили на стол рисунком вниз. Верхнюю карту перевернули (см. рисунок). Сколько информации будет заключено в сообщении о том, какая именно карта оказалась сверху?
Все карты одинаковы, поэтому любая из них могла быть перевернута с одинаковой вероятностью. В таких условиях применима формула Хартли.
Событие, заключающееся в открытии верхней карты, для нашего случая могло иметь 16 возможных исходов. Следовательно, информация о реализации одного из них равняется
I = log2 16 = 4 бита
Примечание. Если вы не любите логарифмы, можно записать формулу Хартли в виде 2I = 16 и получить ответ, подбирая такое I, которое ей удовлетворяет.
Пример 2. Решите предыдущую задачу для случая, когда сообщение об исходе случайного события было следующим: “верхняя перевернутая карта оказалась черной дамой”.
Отличие данной задачи от предыдущей заключается в том, что в результате сообщения об исходе случайного события не наступает полной определенности: выбранная карта может иметь одну из двух черных мастей.
В этом случае, прежде чем воспользоваться формулой Хартли, необходимо вспомнить, что информация есть уменьшение неопределенности знаний:
I = H1 – H2
До переворота карты неопределенность (энтропия) составляла
H1 = log2 N1
после него —
H2 = log2 N2
(причем для нашей задачи N1 = 16, а N2 = 2).
В итоге информация вычисляется следующим образом:
I = H1 – H2 = log2 N1 – log2 N2 = log2 N1/N2 = log2 16/2 = 3 бита
Заметим, что в случае, когда нам называют карту точно (см. предыдущий пример), неопределенность результата исчезает, N2 = 1, и мы получаем “традиционную” формулу Хартли. И еще одно полезное наблюдение. Полная информация о результате рассматриваемого опыта составляет 4 бита (см. пример 1). В данном же случае мы получили 3 бита информации, а оставшийся четвертый описывает сохранившуюся неопределенность выбора между двумя дамами черной масти.