Способы представления информации в наглядном виде

Существует много способов представления информации визуально. Для упрощения и запоминания информации оператором при визуальных способах часто используют специальные символы, если объект имеет характерные изобразительные формы.

Деятельность оператора ограничивается тем, что он имеет дело не с реальными объектами, а с информационными моделями реальных объектов. Физической реализацией информационной модели, предназначенной для зрительного восприятия, является информационное поле средств воспроизведения.

Информационное поле - это находящаяся в поле зрения оператора часть пространства, предназначенная для передачи информации, представленной совокупностью оптических образов.

Все сообщения, поступающие на средства воспроизведения информации, кодируются, т.е. всему сообщению или отдельным его частям присваивается определенный символ.

Различают три основные группы символов: геометрические, физические и цифровые.

Геометрическиевыражают значение какого-либо фактора длиной линии, расстоянием между двумя точками или углом. Они используются и для воспроизведения трехмерной информации.

Физическиеотображают значения параметров физическим состоянием носителя информации. В качестве физической символики используются: интенсивность одноцветной окраски участков поверхности носителя - тонография; степень почернения светочувствительного материала - фотография; интенсивность свечения люминесцентного вещества - люминография; величина электрического потенциала в точках наэлектризованного диэлектрика - электроннография; цвет окраски участков поверхности носителя - колография; величина магнитной индукции в элементах намагниченного носителя - феррография.

Знаковые (цифровые) символы отображают цифры, буквы и условные знаки, их сочетания, соответствующие системам счисления.

Для кодирования информации применяется ряд способов: например изменение формы, цвета и размера знаков; положения и ориентации знаков на информационном поле; яркости свечения.

В табл. 4.1 приведено примерное количество градаций кодов, при котором возможно независимое опознание каждой градации при различных способах кодирования.

Таблица 4.1

Способ кодирования Количе-ство градаций Способ кодирования Количе- ство градаций
Цвет Размер Форма: буквенно-цифровая с пунктуацией абстрактная по ассоциации Расположение: линейное двухмерное трехмерное Ориентация 3-10 8-16 200-1000 3-5 4-9 8-12 4-8 Ширина линии Число (количество) сигналов Частота мигания или мерцания Яркость Длина линии Тип линии (из точек, тире) Фокусировка или искажения Объемность Движение 2-3 2-4 2-4 2-4 3-4 2-3 2-10


Применяют три основных способа: 1) буквенно-цифровой; 2) в виде специальных условных знаков; 3) с помощью линий, площадей, геометрических фигур.

Буквенно-цифровой способ представления информации широко распространен, как наиболее привычный и удобный для восприятия. Символы кода (буквы, цифры) объединяются в более сложные кодовые группы (слова, числа, таблицы), которые отображают действительные предметы или отвлеченные понятия.

Способ представления информации в виде специальных условных знаков применяют для упрощения понимания и запоминания информации при визуальных способах. При этом часто используют специальные символы, особенно тогда, когда воспроизводимое понятие или объект имеют характерные изобразительные формы. Этот способ удобен для восприятия логических взаимосвязей отдельных элементов систем, для отображения решения, состояния управляемых объектов, типов объектов. Максимальное число различных символов ограничивается памятью оператора. Для облегчения восприятия информации в условиях кратковременного воспроизведения быстроменяющейся обстановки используются символы различных цветов, частот мерцаний и яркостей.

Способ представления информации с помощью линий, площадей, геометрических фигур применяют тогда, когда некоторые виды информации невозможно отобразить на визуальных индикаторах с помощью буквенно-цифровых знаков или символов. Так, авиалинии, изотермы, дороги, топографические контурные линии, графики функций, метеорологические карты лучше всего воспроизводить прочерчиванием линий.

Часто возникает необходимость воспроизводить площади, геометрические фигуры: для обозначения болот, участков выпадения вредных осадков, районов действий, различных участков на картах и графиках.

Информационные поля могут строиться в виде: текста, таблиц, условных знаков на картах, схем, экранов, сетевых графиков, функциональных графиков, диаграмм, гистограмм и т.д.

Целесообразность использования того или иного вида кодирования определяется видом информации.

11.Представление текстовой информации в ПК.

Для кодирования одного символа используется количество информации, равное одному байту, т.е. I = 1 байт = 8 бит.

256 символов достаточно для представления текстовой информации, включая прописные и заглавные буквы русского и латинского алфавита, цифры, знаки, графические символы и т.д.

Кодирование заключается в том, что каждому символу ставится в соответствие уникальный десятичный код от 0 до 255 или соответствующий ему двоичный код 00000000 до 11111111.

При вводе в компьютер текстовой информации изображение символа преобразуется в его двоичный код. Код символа хранится в оперативной памяти компьютера, где занимает одну ячейку.

В процессе вывода символа на экран происходит обратный процесс – преобразование кода символа в его изображение.

Существует соглашение, которое фиксируется в кодовой таблице (ASCII).

12.Представление графической информации

Растровое представление

Компьютерная графика — раздел информатики, предметом которого является работа на компьютере с графическими изображениями (рисунками, чертежами, фото­графиями, видеокадрами и пр.).

Пиксель— наименьший элемент изображения на экране (точка на экране).

Растр— прямоугольная сетка пикселей на экране.

Разрешающая способность экрана— размер сетки растра, задаваемого в виде произведения М х N, где М — число точек по горизонтали, N — число точек по вертикали (число строк).

Видеоинформация— информация об изображении, воспро­изводимом на экране компьютера, хранящаяся в компьютер­ной памяти.

Видеопамять— оперативная память, хранящая видеоин­формацию во время ее воспроизведения в изображение на экра­не.

Графический файл— файл, хранящий информацию о гра­фическом изображении.

Число цветов, воспроизводимых на экране дисплея (К), и число битов, отводимых в видеопамяти под каждый пиксель (N)» связаны формулой:

К = 2N.

Способы представления информации в наглядном виде - student2.ru Векторное представление

При векторном подходе изображение рассматривается совокупность простых элементов: прямых линий, дуг, окружностей, эллипсов, прямоугольников, закрасок и пр., которые называются графическими примитивами.Графическая иформация — это данные, однозначно определяющие все графические примитивы, составляющие рисунок.

Положение и форма графических примитивов задаются в системе графических координат,связанных с экраном. Обычно начало координат расположено в верхнем левом углу экрана. Сетка пикселей совпадает с координатной сеткой. Горизонтальная ось X направлена слева направо; вертикальная ось У - сверху вниз.

Отрезок прямой линии однозначно определяется указанием координат его концов; окружность — координатами центра и радиусом; многоугольник — координатами его углов, закра­шенная область — граничной линией и цветом закраски и пр.

13.Звук в памяти компьютера

Физическая природа звука — колебания в определенном диапазоне частот, передаваемые звуковой волной через воздух (или другую упругую среду). Процесс преобразования звуковых волн в двоичный код в памяти компьютера

 
  Способы представления информации в наглядном виде - student2.ru

ё

Процесс воспроизведения звуковой информации, сохраненной в памяти компьютера:

Способы представления информации в наглядном виде - student2.ru

Аудиоадаптер (звуковая плата) — специальное устройство, подключаемое к компьютеру, предназначенное для преобразования электрических колебаний звуковой частоты в числовой двоичный код при вводе звука и для обратного преобразования (из числового кода в электрические колебания) при воспроизве­ди звука.

В процессе записи звука аудиоадаптер с определенным периодом измеряет амплитуду электрического тока и заносит в регистр двоичный код полученной величины. Затем полученный код из регистра переписывается в оперативную память компыотера. Качество компьютерного звука определяется характеристиками аудиоадаптера: частотой дискретизации и раз­рядностью.

Частота дискретизации — это количество измерений вход­ного сигнала за 1 секунду. Частота измеряется в герцах (Гц). Одно измерение за одну секунду соответствует частоте 1 Гц. 1000 измерений за 1 секунду — 1 килогерц (кГц). Характерные частоты дискретизации аудиоадаптеров: 11 кГц, 22 кГц, 44,1 кГц и др.

Разрядность регистра — число битов в регистре аудиоадап­тера. Разрядность определяет точность измерения входного сигнала. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического сигнала в число и обратно. Если разрядность равна 8 (16), то при измерении входного сигнала может быть получено 28 = 256 (216 = 65 536) различных значений. Очевидно, 16-разрядный аудиоадаптер точнее кодирует и воспроизводит звук, чем 8-разрядный.

Звуковой файл — файл, хранящий звуковую информацию в числовой двоичной форме. Как правило, информация в звуко­вых файлах подвергается сжатию.

14.Система счисления — символический метод записи чисел, представление чисел с помощью письменных знаков.
Для начала проведём границу между числом и цифрой:

  • Число — это некоторая абстрактная сущность для описания количества.
  • Цифры — это знаки, используемые для записи чисел.

Цифры бывают разные: самыми распространёнными являются арабские цифры, представляемые известными нам знаками от нуля (0) до девяти (9); менее распространены римские цифры, мы их можем иногда встретить на циферблате часов или в обозначении века (XIX век).

Итак запомним:

  • число — это абстрактная мера количества;
  • цифра — это знак для записи числа.

Поскольку чисел гораздо больше чем цифр, то для записи числа обычно используется набор (комбинация) цифр.

Только для небольшого количества чисел — для самых малых по величине — бывает достаточно одной цифры.

Существует много способов записи чисел с помощью цифр. Каждый такой способ называется системой счисления.

Величина числа может зависеть от порядка цифр в записи, а может и не зависеть.

Это свойство определяется системой счисления и служит основанием для простейшей классификации таких систем.

Итак, указанное основание позволяет все системы счисления разделить на три класса (группы):

  • позиционные;
  • непозиционные;
  • смешанные.

Позиционные системы счисления мы рассмотрим более подробно ниже.

Расскажем вкратце о смешанных и непозиционных системах.

Денежные знаки — это пример смешанной системы счисления.

Сейчас в России используются монеты и купюры следующих номиналов: 1 коп., 5 коп., 10 коп., 50 коп., 1 руб., 2 руб., 5 руб., 10 руб., 50 руб., 100 руб., 500 руб., 1000 руб. и 5000 руб. Чтобы получить некоторую сумму в рублях, нам нужно использовать некоторое количество денежных знаков различного достоинства.

Предположим, что мы покупаем пылесос, который стоит 6379 руб.

Для покупки можно использовать шесть купюр по тысяче рублей, три купюры по сто рублей, одна пятидесятирублёвая купюра, две десятки, одна пятирублёвая монета и две монеты по два рубля.

Если мы запишем количество купюр или монет начиная с 1000 руб. и заканчивая одной копейкой, заменяя нулями пропущенные номиналы, то мы получим число 603121200000.

В непозиционных системах счисления величина числа не зависит от положения цифр в записи.

Если бы мы перемешали цифры в числе 603121200000, то мы бы не смогли понять, сколько стоит пылесос. Следовательно, такая запись относится к позиционным системам.

Если же к каждой цифре приписать знак номинала, то такие составные знаки (цифра+номинал) уже можно было бы перемешивать. То есть такая запись уже является непозиционной.

Примером «чисто» непозиционной системы счисления является римская система.

15.

16.

17.

19.Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями[1]. Чаще всего предполагается (т. н. бинарная или двоичная логика, в отличие от, например, троичной логики), что высказывания могут быть только истинными или ложными.

Понятия: Алгебраическая интерпретация понятий традиционной логики получила свое ясное оформление в трудах английского математика Джорджа Буля (Boole) (1815-1864), таких как "The mathematical analysis of logic", 1847 и "An investigation of the laws of thought ...", 1854. Категорические суждения логики стали рассматриваться как уравнения относительно символов, обозначающих термины суждения.

Логическая переменная в алгебре логики может принимать одно из двух возможных значений: TRUE - истина, FALSE - ложь. Эти значения в цифровой технике принято рассматривать как логическую "1" (TRUE) и логический "0" (FALSE), или как двоичные числа 1 и 0. Физически это может означать присутствие или отсутствие некоторого сигнала (замкнуто, разомкнуто), уровень потенциала на электронном элементе (высокий, низкий), протекание или отсутствие тока в некоторой цепи и т.п. Логические переменные позволяют легко описать состояние таких объектов, как тумблеры, кнопки, реле, триггеры и других, которые могут находиться в двух четко различимых состояниях: включено - выключено.

Формализуя логические операции, Дж. Буль ввел символы для обозначения вещей (x, y, z, ..), качеств вещей (X, Y, Z, ..), класса вещей (цифра 1), отсутствия вещей (цифра 0), логического сложения суждений (+), логического вычитания суждений (–), логического умножения суждений (*), логического равенства суждений (=). Любое суждение он пытался выразить в виде уравнений с символами, по отношению к которым действуют логические законы.

Алгебра логики в ее современном понимании занимается исследованием операций с высказываниями, в отношении которых можно лишь утверждать, что их содержание истинно или ложно.

В общем случае под логическими переменными * понимаются знаки в формулах, которые могут принимать различные значения из соответствующей области. Логические переменные можно заменять конкретными по содержанию высказываниями.

Наши рекомендации