Структура данных (типы, массив, строки).

Массив - такая структура данных, которая характеризуется:

  • фиксированным набором элементов одного и того же типа;
  • каждый элемент имеет уникальный набор значений индексов;
  • количество индексов определяют мерность массива, например, два индекса - двумерный массив, три индекса - трехмерный массив, один индекс - одномерный массив или вектор;
  • обращение к элементу массива выполняется по имени массива и значениям индексов для данного элемента.

Другое определение: массив - это вектор, каждый элемент которого - вектор.

Синтаксис описания массива представляется в виде:

< Имя > : Array [n1..k1] [n2..k2] .. [nn..kn] of < Тип >.

Для случая двумерного массива:

Mas2D : Array [n1..k1] [n2..k2] of < Тип >, или Mas2D : Array [n1..k1 , n2..k2] of < Тип >

Наглядно двумерный массив можно представить в виде таблицы из (k1-n1+1) строк и (k2-n2+1) столбцов.

Строки

Строка - это линейно упорядоченная последовательность символов, принадлежащих конечному множеству символов, называемому алфавитом.

Строки обладают следующими важными свойствами:

  • их длина, как правило, переменна, хотя алфавит фиксирован;
  • обычно обращение к символам строки идет с какого-нибудь одного конца последовательности, т.е важна упорядоченность этой последовательности, а не ее индексация; в связи с этим свойством строки часто называют также цепочками;
  • чаще всего целью доступа к строке является на отдельный ее элемент (хотя это тоже не исключается), а некоторая цепочка символов в строке.

Говоря о строках, обычно имеют в виду текстовые строки - строки, состоящие из символов, входящих в алфавит какого-либо выбранного языка, цифр, знаков препинания и других служебных символов. Действительно, текстовая строка является наиболее универсальной формой представления любой информации: на сегодняшний день вся сумма информации, накопленной человечеством - от Ветхого Завета до нашего учебного пособия - представлена именно в виде текстовых строк. В наших дальнейших примерах этого раздела будем работать именно с текстовыми строками. Однако, следует иметь в виду, что символы, входящие в строку могут принадлежать любому алфавиту. Так, в языке PL/1, наряду с типом данных "символьная строка" - CHAR(n) - существует тип данных "битовая строка" - BIT(n). Битовые строки, составляются из 1-битовых символов, принадлежащих алфавиту: { 0, 1 }. Все строковые операции с равным успехом применимы как к символьным, так и к битовым строкам.

Кодирование символов было рассмотрено в главе 2. Отметим, что в зависимости от особенности задачи, свойств применяемого алфавита и представляемого им языка и свойств носителей информации могут применяться и другие способы кодирования символов. В современных вычислительных системах, однако, повсеместно принята кодировка всего множества символов на разрядной сетке фиксированного размера (1 байт).

Хотя строки рассматриваются в главе, посвященной полустатическим структурам данных, в тех или иных конкретных задачах изменчивость строк может варьироваться от полного ее отсутствия до практически неограниченных возможностей изменения. Ориентация на ту или иную степень изменчивости строк определяет и физическое представление их в памяти и особенности выполнения операций над ними. В большинстве языков программирования (C, PASCASL, PL/1 и др.) строки представляются именно как полустатические структуры.

В зависимости от ориентации языка программирования средства работы со строками занимают в языке более или менее значительное место. Рассмотрим три примера возможностей работы со строками.

Язык C является языком системного программирования, типы данных, с которыми работает язык C, максимально приближены к тем типам, с которыми работают машинные команды. Поскольку машинные команды не работают со строками, нет такого типа данных и в языке C. Строки в C представляются в виде массивов символов. Операции над строками могут быть выполнены как операции обработки массивов или же при помощи библиотечных (но не встроенных!) функций строковой обработки.

В языках универсального назначения обычно строковый тип является базовым в языке: STRING в PASCAL, CHAR(n) в PL/1. (В PASCAL длина строки, объявленной таким образом, может меняться от 0 до n, в PL/1 чтобы длина строки могла меняться, она должна быть объявлена с описателем VARING.) Основные операции над строками реализованы как простые операции или встроенные функции. Возможны также библиотеки, обеспечивающие расширенный набор строковых операций.

Операции над строками

Базовыми операциями над строками являются:

  • определение длины строки;
  • присваивание строк;
  • конкатенация (сцепление) строк;
  • выделение подстроки;
  • поиск вхождения.

Операция определения длины строки имеет вид функции, возвращаемое значение которой - целое число - текущее число символов в строке. Операция присваивания имеет тот же смысл, что и для других типов данных.

Операция сравнения строк имеет тот же смысл, что и для других типов данных. Сравнение строк производится по следующим правилам. Сравниваются первые символы двух строк. Если символы не равны, то строка, содержащая символ, место которого в алфавите ближе к началу, считается меньшей. Если символы равны, сравниваются вторые, третьи и т.д. символы. При достижении одной конца одной из строк строка меньшей длины считается меньшей. При равенстве длин строк и попарном равенстве всех символов в них строки считаются равными.

Результатом операции сцепления двух строк является строка, длина которой равна суммарной длине строк-операндов, а значение соответствует значению первого операнда, за которым непосредственно следует значение второго операнда. Операция сцепления дает результат, длина которого в общем случае больше длин операндов. Как и во всех операциях над строками, которые могут увеличивать длину строки (присваивание, сцепление, сложные операции), возможен случай, когда длина результата окажется большей, чем отведенный для него объем памяти. Естественно, эта проблема возникает только в тех языках, где длина строки ограничивается. Возможны три варианта решения этой проблемы, определяемые правилами языка или режимами компиляции:

  • никак не контролировать такое превышение, возникновение такой ситуации неминуемо приводит к труднолокализуемой ошибке при выполнении программы;
  • завершать программу аварийно с локализацией и диагностикой ошибки;
  • ограничивать длину результата в соответствии с объемом отведенной памяти;

Операция выделения подстроки выделяет из исходной строки последовательность символов, начиная с заданной позиции n, с заданной длиной l. В языке PASCAL соответствующая функция называется COPY. В языках PL/1, REXX соответствующая функция - SUBSTR - обладает интересным свойством, отсутствующим в PASCAL. Функция SUBSTR может употребляться в левой части оператора присваивания. Например, если исходное значение некоторой строки S - 'ABCDEFG', то выполнение оператора: SUBSTR(S,3,3)='012'; изменит значение строки S на - 'AB012FG'.

При реализации операции выделения подстроки в языке программирования и в пользовательской процедуре обязательно должно быть определено правило получения результата для случая, когда начальная позиция n задана такой, что оставшаяся за ней часть исходной строки имеет длину, меньшую заданной длины l, или даже n превышает длину исходной строки. Возможные варианты такого правила:

  • аварийное завершение программы с диагностикой ошибки;
  • формирование результата меньшей длины, чем задано, возможно даже - пустой строки.

Операция поиска вхождения находит место первого вхождения подстроки-эталона в исходную строку. Результатом операции может быть номер позиции в исходной строке, с которой начинается вхождение эталона или указатель на начало вхождения. В случае отсутствия вхождения результатом операции должно быть некоторое специальное значение, например, нулевой номер позиции или пустой указатель.

На основе базовых операций могут быть реализованы и любые другие, даже сложные операции над строками. Например, операция удаления из строки символов с номерами от n1 включительно n2 может быть реализована как последовательность следующих шагов:

  • выделение из исходной строки подстроки, начиная с позиции 1, длиной n1-1;
  • выделение из исходной строки подстроки, начиная с позиции n2+1, длиной длина исходной строки - n2;
  • сцепление подстрок, полученных на предыдущих шагах.

Впрочем, в целях повышения эффективности некоторые вторичные операции также могут быть реализованы как базовые - по собственным алгоритмам, с непосредственным доступом к физической структуре строки.

Основные типы данных.

Данные, хранящиеся в памяти ЭВМ представляют собой совокупность нулей и едениц (битов). Биты объединяются в последовательности: байты, слова и т.д. Каждому участку оперативной памяти, который может вместить один байт или слово, присваивается порядковый номер (адрес).

Какой смысл заключен в данных, какими символами они выражены - буквенными или цифровыми, что означает то или иное число - все это определяется программой обработки. Все данные необходимые для решения практических задач подразделяются на несколько типов, причем понятие тип связывается не только с представлением данных в адресном пространстве, но и со способом их обработки.

Любые данные могут быть отнесены к одному из двух типов: основному (простому), форма представления которого определяется архитектурой ЭВМ, или сложному, конструируемому пользователем для решения конкретных задач.

Данные простого типа это - символы, числа и т.п. элементы, дальнейшее дробление которых не имеет смысла. Из элементарных данных формируются структуры (сложные типы) данных.

Некоторые структуры:

  • Массив(функция с конечной областью определения) - простая совокупность элементов данных одного типа, средство оперирования группой данных одного типа. Отдельный элемент массива задается индексом. Массив может быть одномерным, двумерным и т.д. Разновидностями одномерных массивов переменной длины являются структуры типа кольцо, стек, очередь и двухсторонняя очередь.
  • Запись(декартово произведение) - совокупность элементов данных разного типа. В простейшем случае запись содержит постоянное количество элементов, которые называют полями. Совокупность записей одинаковой структуры называется файлом. (Файлом называют также набор данных во внешней памяти, например, на магнитном диске). Для того, чтобы иметь возможность извлекать из файла отдельные записи, каждой записи присваивают уникальное имя или номер, которое служит ее идентификатором и располагается в отдельном поле. Этот идентификатор называют ключом.

Такие структуры данных как массив или запись занимают в памяти ЭВМ постоянный объем, поэтому их называют статическими структурами. К статическим структурам относится также множество.

Имеется ряд структур, которые могут изменять свою длину - так называемые динамические структуры. К ним относятся дерево, список, ссылка.

Важной структурой, для размещения элементов которой требуется нелинейное адресное пространство является дерево. Существует большое количество структур данных, которые могут быть представлены как деревья. Это, например, классификационные, иерархические, рекурсивные и др. структуры. Более подробно о деревьях рассказано в параграфе 1.2.1.

структура данных (типы, массив, строки). - student2.ru


Рис. 1.1 Классификация типов данных.

Определение

Тип (сорт) – относительно устойчивая и независимая совокупность элементов, которую можно выделить во всем рассматриваемом множестве (предметной области).

Полиморфный тип - представление набора типов как единственного типа. Математический тип может быть определён двумя способами: 1) Множеством всех значений, принадлежащим типу. 2) Предикатной функцией, определяющей принадлежность объекта к данному типу

Наши рекомендации