Е и далее: третье и последующие поколения
Бурный рост использования компьютеров начался с т. н. «3-им поколением» вычислительных машин. Начало этому положило изобретение интегральных схем, которые независимо друг от друга изобрели лауреат Нобелевской премииДжек Килби и Роберт Нойс. Позже это привело к изобретению микропроцессораТэдомХоффом (компания Intel).
В течение 1960-х наблюдалось определённое перекрытие технологий 2-го и 3-го поколений. В конце 1975 года, в SperryUnivac продолжалось производство машин 2-го поколения, таких как UNIVAC 494.
Появление микропроцессоров привело к разработке микрокомпьютеров — небольших недорогих компьютеров, которыми могли владеть небольшие компании или отдельные люди. Микрокомпьютеры, представители четвёртого поколения, первые из которых появился в 1970-х, стали повсеместным явлением в 1980-х и позже. Стив Возняк, один из основателей AppleComputer, стал известен как разработчик первого массового домашнего компьютера, а позже — первого персонального компьютера. Компьютеры на основе микрокомпьютерной архитектуры, с возможностями, добавленными от их больших собратьев, сейчас доминируют в большинстве сегментов рынка.
Вопрос №14. Понятие архитектуры. Архитектура ЭВМ по Фон-Нейману.
Под архитектурой ЭВМ понимается совокупность общих принципов организации аппаратно-программных средств и их характеристик, определяющая функциональные возможности ЭВМ при решении соответствующих классов задач.
Архитектура ЭВМ охватывает широкий круг проблем, связанных с построением комплекса аппаратных и программных средств и учитывающих множество факторов. Среди этих факторов важнейшими являются: стоимость, сфера применения, функциональные возможности, удобство эксплуатации, а одним из главных компонентов архитектуры являются аппаратные средства. Основные компоненты архитектуры ЭВМ можно представить в виде схемы, показанной на рисунке.
Архитектуру вычислительного средства следует отличать от его структуры. Структура вычислительного средства определяет его конкретный состав на некотором уровне детализации (устройства, блоки узлы и т. д.) и описывает связи внутри средства во всей их полноте. Архитектура же определяет правила взаимодействия составных частей вычислительного средства, описание которых выполняется в той мере, в какой это необходимо для формирования правил их взаимодействия. Она регламентирует не все связи, а наиболее важные, которые должны быть известны для более грамотного использования данного средства.
Классическая архитектура ЭВМ. Принципы фон Неймана.
Основы учения об архитектуре вычислительных машин заложил выдающийся американский математик Джон фон Нейман (1903-1957). Он подключился к созданию первой в мире ламповой ЭВМ "ЭНИАК" в 1944 году, когда ее конструкция была уже выбрана. В процессе работы во время многочисленных дискуссий со своими коллегами Г.Голдстайном и А.Берксом, фон Нейман высказал идею принципиально новой ЭВМ. В 1946 году ученые изложили свои принципы построения вычислительных машин в ставшей классической статье "Предварительное рассмотрение логической конструкции электронно-вычислительного устройства". С тех пор прошло полвека, но выдвинутые в ней положения сохраняют актуальность и сегодня.
В статье убедительно обосновывается использование двоичной системы для представления чисел (нелишне напомнить, что ранее все вычислительные машины хранили обрабатываемые числа в десятичном виде). Авторы убедительно продемонстрировали преимущества двоичной системы для технической реализации, удобство и простоту выполнения в ней арифметических и логических операций. В дальнейшем ЭВМ стали обрабатывать и нечисловые виды информации: текстовую, графическую, звуковую и другие. Но по-прежнему двоичное кодирование данных составляет информационную основу любого современного компьютера.
Еще одной поистине революционной идеей, значение которой трудно переоценить, является предложенный Нейманом принцип "хранимой программы". Первоначально программа задавалась путем установки перемычек на специальной коммутационной панели. Это было весьма трудоемким занятием: например, для изменения программы "ЭНИАК" требовалось несколько дней (в то время как собственно расчет не мог продолжаться более нескольких минут - выходили из строя лампы). Нейман первым догадался, что программа может также храниться в виде набора нулей и единиц, причем в той же самой памяти, что и обрабатываемые ей числа. Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатами вычислений.
Фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, которая воспроизводилась в течении первых двух поколений ЭВМ. Основными блоками по Нейману являются устройство управления (УУ) и арифметико-логическое устройство (АЛУ) (обычно объединяются в центральный процессор), память, внешняя память, устройства ввода и вывода. Следует отметить, что внешняя память отличается от устройств ввода и вывода тем, что данные в нее заносятся в виде, удобном компьютеру, но недоступном для непосредственного восприятия человеком. Так, накопитель на магнитных дисках относится к внешней памяти, клавиатура - устройство ввода, а дисплей и печать - устройства вывода.
Рис.1Архитектура ЭВМ, построенная на принципах фон Неймана. Стрелки указывают направление обмена. Символом "У" помечены управляющиесвязи между процессором и остальными узлами ЭВМ.
Устройство управления и арифметико-логическое устройство в современных компьютерах объединены в один блок - процессор, являющийся преобразователем информации, поступающей из памяти и внешних устройств. Сюда относятся выборка команд из памяти, кодирование и декодирование, выполнение различных (в том числе и арифметических) операций, согласование работы узлов компьютера. Более детально функции процессора будут обсуждаться ниже. Память(ЗУ) хранит информацию (данные) и программы. ЗУ у современных компьютеров "многоярусно" и включает:
- ОЗУ (оперативное запоминающее устройство), хранящее ту информацию, с которой компьютер работает непосредственно в данное время (исполняемая программа, часть необходимых для нее данных, некоторые управляющие программы),
- ВЗУ(внешние запоминающие устройства) гораздо большей емкости чем ОЗУ, но с гораздо более медленным доступом (и гораздо меньшей стоимостью в расчете на 1 байт хранимой информации).
- ПЗУ(постоянное запоминающее устройство).
На ОЗУ и ВЗУ классификация устройств памяти не заканчивается - определенные функции выполняют и СОЗУ (сверхоперативное запоминающее устройство) существуют и другие подвиды компьютерной памяти.
В построенной по описанной схеме ЭВМ происходит последовательное считывание команд из памяти и их выполнение. Номер (адрес) очередной ячейки памяти, из которой будет извлечена следующая команда программы, указывается специальным устройством - счетчиком команд в УУ.Его наличие также является одним из характерных признаков рассматриваемой архитектуры.
Разработанные фон Нейманом основы архитектуры вычислительных устройств оказались настолько фундаментальными, что получили в литературе название "фон-неймановской архитектуры". Подавляющее большинство вычислительных машин на сегодняшний день - это фон-неймановские машины. Исключение составляют лишь отдельные разновидности систем для параллельных вычислений, в которых отсутствует счетчик команд, не реализована классическая концепция переменной и имеются другие существенные принципиальные отличия от классической модели. Примером могут служить потоковая и редукционная вычислительные машины.
По-видимому, значительное отклонение от фон-неймановской архитектуры произойдет в результате развития машин пятого поколения, в основе обработки информации в которых лежат не вычисления, а логические выводы.
Вопрос№ 15. Классификация ЭВМ. Современный компьютер как совокупность аппаратных и программных средств.
Классификация - См. в отдельном файле