Кафедра «Автоматика и процессы управления»
МОДЕЛИРОВАНИЕ
ПОСОБИЕ
по выполнению лабораторных работ 1,2
для студентов V курса
заочного отделения
Москва – 2008
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
«МАМИ»
Кафедра «Автоматика и процессы управления»
Е.Г.Мурачев
МОДЕЛИРОВАНИЕ
ПОСОБИЕ
по выполнению лабораторных работ 1,2
для студентов V курса
заочного отделения
Москва – 2008
С О Д Е Р Ж А Н И Е
Лабораторная работа №1……………………………………………………….. 4
Цель работы…………………………………………………………….. 4
Общие сведения………………………………………………………… 4
Задание………………………………………………………………….. 8
Порядок выполнения работы……………………………………….. 9
Отчет по работе………………………………………………………… 9
Модель –схемы с параллельной структурой………………………. 9
Варианты заданий……………………………………………………..10
Контрольные вопросы………………………………………………...11
Лабораторная работа 2…………………………………………………………..12
Цель работы……………………………………………………………..12
Общие сведения…………………………………………………………12
Задание…………………………………………………………………..19
Порядок выполнения работы………………………………………...19
Отчет по работе…………………………………………………………20
Контрольные вопросы………………………………………………...20
Приложение……………………………………………………………………….21
Лабораторная работа №1
Основы имитационного моделирования с помощью языка GPSS
Исследование модели с праллельной структурой
Цель работы
1. Знакомство со структурой языка GPSS
2. Создание программы в среде программирования GPSS
3. Принципы построения непрерывно-стохастическоймодели на основе теории очередей
4. Составление программного кода для модели с параллельной структурой
5. Изучение объекта исследования с помощью составленной модели
6. Анализ результатов моделирования
ОБЩИЕ СВЕДЕНИЯ
МАТЕМАТИЧЕСКИЕ СХЕМЫ МОДЕЛИРОВАНИЯ
СИСТЕМ
Наибольшие затруднения и наиболее серьезные ошибки при моделировании возникают при переходе от содержательного к формальному описанию объектов исследования. Эффективным является язык математических схем, позволяющий во главу угла поставить вопрос об адекватности перехода от содержательного описания системы к ее математической схеме, а лишь затем решать вопрос о конкретном методе получения результатов с использованием ЭВМ: аналитическом или имитационном, а возможно, и комбинированном, т. е. аналитико-имитационном. Применительно к конкретному объекту моделирования, т. е. к сложной системе, разработчику модели должны помочь конкретные, уже прошедшие апробацию для данного класса систем математические схемы, показавшие свою эффективность в прикладных исследованиях на ЭВМ и получившие название типовых математических схем.
ОСНОВНЫЕ ПОДХОДЫ К ПОСТРОЕНИЮ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ СИСТЕМ
Исходной информацией при построении математических моделей процессов функционирования систем служат данные о назначении и условиях работы исследуемой (проектируемой) системы S. Эта информация определяет основную цель моделирования системы S и позволяет сформулировать требования к разрабатываемой математической модели М. Причем уровень абстрагирования зависит от круга тех вопросов, на которые исследователь системы хочет получить ответ с помощью модели, и в какой-то степени определяет выбор математической схемы.
Математическую схему можно определить как звено при переходе от содержательного к формальному описанию процесса функционирования системы с учетом воздействия внешней среды, т. е. имеет место цепочка «описательная модель — математическая схема — математическая [аналитическая или (и) имитационная] модель».
Каждая конкретная система S характеризуется набором свойств, под которыми понимаются величины, отражающие поведение моделируемого объекта (реальной системы) и учитывающие условия ее функционирования во взаимодействии с внешней средой (системой) Е. При построении математической модели системы необходимо решить вопрос об ее полноте. Полнота модели регулируется в основном выбором границы «система S — среда Е». Также должна быть решена задача упрощения модели, которая помогает выделить основные свойства системы, отбросив второстепенные. Причем отнесение свойств системы к основным или второстепенным существенно зависит от цели моделирования системы (например, анализ вероятностно-временных характеристик процесса функционирования системы, синтез структуры системы и т. д.).
Модель объекта моделирования, т. е. системы S, можно представить в виде множества величин, описывающих процесс функционирования реальной системы и образующих в общем случае следующие подмножества:
совокупность входных воздействий на систему
, i=1,2,…, ;
совокупность воздействий внешней среды
;
совокупность внутренних (собственных) параметров системы
совокупность выходных характеристик системы
При этом в перечисленных подмножествах можно выделить управляемые и неуправляемые переменные. В общем случае , ν, h, y являются элементами непересекающихся подмножеств и содержат как детерминированные, так и стохастические составляющие.
При моделировании системы S входные воздействия, воздействия внешней среды Е и внутренние параметры системы являются независимыми (экзогенными) переменными, а выходные характеристики системы являются зависимыми (эндогенными) переменными
Процесс функционирования системы S описывается во времени оператором , который в общем случае преобразует экзогенные переменные в эндогенные в соответствии с соотношениями вида
y(t)= (x,v,h, t) (1.1)
Совокупность зависимостей выходных характеристик системы от времени для всех видов у называется выходной траекторией у (t). Зависимость (1.1) называется законом функционирования системы S и обозначается . В общем случае закон функционирования системы может быть задан в виде функции, функционала, логических условий, в алгоритмической и табличной формах или в виде словесного правила соответствия.
Весьма важным для описания и исследования системы S является понятие алгоритма функционирования , под которым понимается метод получения выходных характеристик с учетом входных воздействий х (t), воздействий внешней среды v (t) и собственных параметров системы h(t). Очевидно, что один и тот же закон функционирования системы S может быть реализован различными способами, т. е. с помощью множества различных алгоритмов функционирования .
Соотношение (1.1) является математическим описанием поведения объекта (системы) моделирования во времени t, т. е. отражает его динамические свойства. Поэтому математические модели такого вида принято называть динамическими моделями.
Для статических моделей математическая модель (1.1) представляет собой отображение между двумя подмножествами свойств моделируемого объекта Y и {X, V, H}, что в векторной форме может быть записано как
y=f(x,v,h). (1.2)
Соотношения (1.1) и (1.2) могут быть заданы различными способами: аналитически (с помощью формул), графически, таблично и т. д. Такие соотношения в ряде случаев могут быть получены через свойства системы S в конкретные моменты времени, называемые состояниями.
Если рассматривать процесс функционирования системы S как последовательную смену состояний, то они могут быть интерпретированы как координаты точки в n-мерном фазовом пространстве, причем каждой реализации процесса будет соответствовать некоторая фазовая траектория. Совокупность всех возможных значений состояний называется пространством состояний объекта моделирования Z.
Состояния системы S в момент времени полностью определяются начальными условиями ,входными воздействиями x(t), внутренними параметрами h(t) и воздействиями внешней среды v(t), которые имели место за промежуток времени t* - , с помощью двух векторных уравнений
Z(t)=Ф(z°,x,v,h,t) (1.3)
y(t)=F(z,t) (1.4)
Первое уравнение по начальному состоянию z° и экзогенным переменным x,v,h определяет вектор-функцию z(0), а второе по полученному значению состояний z (t) — эндогенные переменные на выходе системы у (t). Таким образом, цепочка уравнений объекта «вход — состояния — выход» позволяет определить характеристики системы y(t)=F{Ф(z°, x,v,h,t)} (1.5)
В общем случае время в модели системы S может рассматриваться на интервале моделирования (0, Т) как непрерывное, так и дискретное.
Таким образом, под математической моделью объекта (реальной системы) понимают конечное подмножество переменных {x(t), v(t), h(t)} вместе с математическими связями между ними и характеристиками у (t).
Если математическое описание объекта моделирования не содержит элементов случайности или они не учитываются, т. е. если можно считать, что в этом случае стохастические воздействия внешней среды v(t) и стохастические внутренние параметры h(t) отсутствуют, то модель называется детерминированной в том смысле, что характеристики однозначно определяются детерминированными входными воздействиями
y(t)=f(x,t) (1.6)
Очевидно, что детерминированная модель является частным случаем стохастической модели.
НЕПРЕРЫВНО-СТОХАСТИЧЕСКИЕ МОДЕЛИ
(Q-СХЕМЫ)
Особенности непрерывно-стохастического подхода рассмотрим на примере использования в качестве типовых математических схем систем массового обслуживания, которые будем называть Q-схемами. Системы массового обслуживания представляют собой класс математических схем, разработанных в теории массового обслуживания и различных приложениях для формализации процессов функционирования систем, которые по своей сути являются процессами обслуживания.
В качестве процесса обслуживания могут быть представлены различные по своей физической природе процессы функционирования экономических, производственных, технических и других систем, например потоки поставок продукции некоторому предприятию, потоки деталей и комплектующих изделий на сборочном конвейере цеха, заявки на обработку информации ЭВМ от удаленных терминалов и т. д. При этом характерным для работы таких объектов является случайное появление заявок (требований) на обслуживание и завершение обслуживания в случайные моменты времени, т. е. стохастический характер процесса их функционирования.
В любом элементарном акте обслуживания можно выделить две основные составляющие: ожидание обслуживания заявкой и собственно обслуживание заявки.
Прибор обслуживания заявок
Это можно изобразить в виде некоторого i-гo прибора обслуживания (рисунок), состоящего из накопителя заявок ,в котором может одновременно находиться заявок, где — емкость i-гo накопителя и канала обслуживания заявок (или просто канала) . На каждый элемент прибора обслуживания поступают потоки событий: в накопитель — поток заявок , на канал — поток обслуживаний .
Потоком событий называется последовательность событий, происходящих одно за другим в какие-то случайные моменты времени. Различают потоки однородных и неоднородных событий. Поток событий называется однородным, если он характеризуется только моментами поступления этих событий (вызывающими моментами) и задается. Mомент наступления i-го события — неотрицательное вещественное число. Однородный поток событий также может быть задан в виде последовательности промежутков времени между i-м и (п-1)-м событиями, которая однозначно связана с последовательностью поступления заявок.
При моделировании различных систем применительно к элементарному каналу обслуживания можно считать, что поток заявок , т. е. интервалы времени между моментами появления заявок на входе образует подмножество неуправляемых переменных, а поток обслуживания U, т. е. интервалы времени между началом и окончанием обслуживания заявки, образует подмножество управляемых переменных.
Заявки, обслуженные каналом и заявки, покинувшие прибор по различным причинам не обслуженными (например, из-за переполнения накопителя , образуют выходной поток , т. е. интервалы времени между моментами выхода заявок образуют подмножество выходных переменных.
Процесс функционирования прибора обслуживания можно представить как процесс изменения состояний его элементов во времени z(t). Переход в новое состояние означает изменение количества заявок, которые в нем находятся (в канале и в накопителе ).
В практике моделирования систем, имеющих более сложные структурные связи и алгоритмы поведения, для формализации используются не отдельные приборы обслуживания, а Q-схемы, образуемые композицией многих элементарных приборов обслуживания (сети массового обслуживания).
Для того, чтобы осуществить процесс моделирования полученной Q-схемы используют различные языки имитационного моделирования. Одним из таких языков является язык имитационного моделирования GPSS (см. приложение 1)
Задание:
Выполнить моделирование системы массового обслуживания, в которую поступают заявки по равномерному закону распределения через А +/- В минут. Обработка заявок осуществляется двумя обслуживающими каналами. Поступление заявок в тот или иной канал происходит с вероятностью и .
Провести моделирование системы с параметрами А,В, , , , , где обслуживание заявок каждым каналом происходит по равномерному закону со временем +/- ..
Провести моделирование системы с параметрами А=А+-А/2, В=В+-В/2, , , = +- /2, = +- /2.
Произвести моделирование четырехканального обслуживания с одинаковыми параметрами по каждому каналу: А, В, , .
Необходимо осуществить обработку 100 заявок при двух прогонах программы
В ходе моделирования необходимо определить степень загрузки еаждого канала, время обслуживания заявок по каждому каналу, Общее время обслуживания ста исходных заявок.
Порядок выполнения работы:
1. Ознакомиться с методическими указаниями по выполнению данной лабораторной работы.
2. Получить варианты заданий и провести необходимые предварительные аналитические расчеты.
3. Приняв за основу блок-диаграмму обслуживающего устройства, приведенную ниже, и выбрав исходные данные по заданному варианту составить программу на языке GPSS.
4. Провести имитационный эксперимент на ЭВМ, варьируя значения исходных параметров, получить результаты двойного прогона модели и сравнить их.
5. Произвести анализ полученных результатов и выбрать оптимальный режим
6. функционирования.
Отчет по работе:
Отчет должен содержать:
1. Задание и исходные данные для выполнения работы.
2. Блок-диаграмму и GPSS-программу имитационного эксперимента с моделью исследуемого варианта системы массового обслуживания.
3. Результаты обработки экспериментальных данных, анализ полученных результатов и выводы по работе.
Модель Q-схемы с параллельной структурой
В качестве примера приведем двухканальную и четырехканальную Q-схемы
Варианты заданий
№ варианта | А | В | ||||
0.2 | 0.8 | |||||
0.25 | 0.75 | |||||
0.31 | 0.69 | |||||
0.43 | 0.57 | |||||
0.74 | 0.26 | |||||
0.84 | 0.16 | |||||
0.56 | 0.44 | |||||
0.34 | 0.66 | |||||
0.82 | 0.18 | |||||
0.23 | 0.77 | |||||
0.11 | 0.89 | |||||
0.36 | 0.64 | |||||
0.73 | 0.27 | |||||
0.93 | 0.07 | |||||
0.45 | 0.55 | |||||
0.24 | 0.76 | |||||
0.33 | 0.67 | |||||
0.14 | 0.86 | |||||
•Ж | 0.42 | 0.58 | ||||
0.64 | 0.36 | |||||
0.55 | 0.45 | |||||
0.25 | 0.75 | |||||
0.28 | 0.72 | |||||
0.87 | 0.13 | |||||
0.26 | 0.74 | |||||
0.82 | 0.18 | |||||
0.25 | 0.75 | |||||
0.49 | 0.51 | |||||
0.66 | 0.34 | |||||
0.28 | 0.72 | |||||
0.97 | 0.03 |
Контрольные вопросы
1. Что лежит в основе теории очередей?
2. Что собой представляет имитационное моделирование?
3. Что такое модель объекта и модель процесса?
4. Что собой представляет язык имитационного моделирования GPSS?
5. Как осуществляется построение программы на языке GPSS?
6. Как осуществляется исследование объекта с помощью полученной модели?
7. В чем заключается анализ результатов исследования?
8. Что такое критерий оптимизации?
9. В чем состоит конечная цель процесса моделирования?
Лабораторная работа №2
Языка GPSS
Цель работы
1. Освоение методов моделей сложных объектов с фазовой структурой
2. Более глубокое освоение языка имитационного моделирования GPSS
3. Отработка методики исследования объекта моделирования
4. Поиск оптимального решения
ОБЩИЕ СВЕДЕНИЯ
Моделирование Q-схем с фазовой структурой
Если приборы массового обслуживания и их параллельные композиции соединены последовательно, то имеет место многофазное обслуживание (многофазная Q-схема). Таким образом, для задания Q-схемы необходимо использовать оператор сопряжения R, отражающий взаимосвязь элементов структуры (каналов и накопителей) между собой.
Связи между элементами Q-схемы изображают в виде стрелок (линий потока, отражающих направление движения заявок). Различают разомкнутые и замкнутые Q-схемы. В разомкнутой Q-схеме выходной поток обслуженных заявок не может снова поступить на какой-либо элемент, т. е. обратная связь отсутствует, а в замкнутых Q-схемах имеются обратные связи, по которым заявки двигаются в направлении, обратном движению вход-выход.
Собственными (внутренними) параметрами Q-схемы будут являться количество фаз, количество каналов в каждой фазе, количество накопителей каждой фазы, емкость i-гo накопителя. Следует отметить, что в теории массового обслуживания в зависимости от емкости накопителя применяют следующую терминологию для систем массового обслуживания: системы с потерями, т. е. имеется только канал обслуживания системы с ожиданием, (т. е. очередь заявок не ограничивается) и системы смешанного типа (с ограниченной емкостью накопителя). Всю совокупность собственных параметров Q-схемы обозначим как подмножество Н.
Для задания Q-схемы также необходимо описать алгоритмы ее функционирования, которые определяют набор правил поведения заявок в системе в различных неоднозначных ситуациях. В зависимости от места возникновения таких ситуаций различают алгоритмы (дисциплины) ожидания заявок в накопителе Н, и обслуживания заявок каналом каждого элементарного обслуживающего прибора Q-схемы. Неоднородность заявок, отражающая процесс в той или иной реальной системе, учитывается с помощью введения классов приоритетов.
В зависимости от динамики приоритетов в Q-схемах различают статические и динамические приоритеты. Статические приоритеты назначаются заранее и не зависят от состояний Q-схемы, т. е. они являются фиксированными в пределах решения конкретной задачи моделирования. Динамические приоритеты возникают при моделировании в зависимости от возникающих ситуаций. Исходя из правил выбора заявок из накопителя на обслуживание каналом можно выделить относительные и абсолютные приоритеты. Относительный приоритет означает, что заявка с более высоким приоритетом, поступившая в накопитель ожидает окончания обслуживания предшествующей заявки каналом и только после этого занимает канал. Абсолютный приоритет означает, что заявка с более высоким приоритетом, поступившая в накопитель прерывает обслуживание каналом заявки с более низким приоритетом и сама занимает канал (при этом вытесненная из заявка может либо покинуть систему, либо может быть снова записана на какое-то место в ).
При рассмотрении алгоритмов функционирования приборов обслуживания (каналов и накопителей Н) необходимо также задать набор правил, по которым заявки покидают и для — либо правила переполнения, по которым заявки в зависимости от заполнения покидают систему, либо правила ухода, связанные с истечением времени ожидания заявки в для — правила выбора маршрутов или направлений ухода. Кроме того, для заявок необходимо задать правила, по которым они остаются в канале или не допускаются до обслуживания каналом ,т. е. правила блокировок канала. При этом различают блокировки по выходу и по входу. Такие блокировки отражают наличие управляющих связей в Q-схеме, регулирующих поток заявок в зависимости от состояний Q-схемы. Весь набор возможных алгоритмов поведения заявок в Q-схеме можно представить в виде некоторого оператора алгоритмов поведения заявок.
Таким образом, Q-схема, описывающая процесс функционирования системы массового обслуживания любой сложности, однозначно задается в виде Q= (W, U, H, Z, R, А).
При ряде упрощающих предположений относительно подмножеств входящих потоков W, потоков обслуживания U (выполнение условий стационарности, ординарности и ограниченного последействия) оператора сопряжения элементов структуры R (однофазное одноканальное обслуживание в разомкнутой системе), подмножества собственных параметров Н (обслуживание с бесконечной емкостью накопителя), оператора алгоритмов обслуживания заявок А (бес приоритетное обслуживание без прерываний и блокировок) для оценки вероятностно-временных характеристик можно использовать аналитический аппарат, разработанный в теории массового обслуживания.
Математическое обеспечение и ресурсные возможности современных ЭВМ позволяют достаточно эффективно провести моделирование различных систем, формализуемых в виде Q-схем, используя либо пакеты прикладных программ, созданные на базе алгоритмических языков общего назначения, либо специализированные языки имитационного моделирования. Пример Q-схемы общего вида
На рисунке представлена трехфазная Q-схема (L =3) с блокировкой каналов по выходу в 1-й и 2-й фазах обслуживания (пунктирные линии на рисунке). В качестве выходящих потоков такой Q-схемы могут быть рассмотрены поток потерянных заявок из и поток обслуженных заявок из ( на рисунке).
Для имитационной модели рассматриваемой Q-схемы можно записать следующие переменные и уравнения: эндогенная переменная Р — вероятность потери заявок; экзогенные переменные: — время появления очередной заявки из N; — время окончания обслуживания каналом очередной заявки, k=1, 2, 3; j=1, 2;вспомогательные переменные: и — состояния Н; параметры: L – емкость, L*—число каналов в i-й фазе.
При имитации процесса функционирования Q-схемы на ЭВМ, требуется организовать массив состояний. В этом массиве должны быть выделены: подмассив К для запоминания текущих значений , соответствующих каналов и времени окончания обслуживания очередной заявки,подмассив Н для записи текущего значения z, соответствующих накопителей , i= 1, 2; подмассив H, в который записывается время поступления очередной заявки из источника (H).
Процедура моделирования процесса обслуживания каждым элементарным каналом сводится к следующему. Путем обращения к генератору случайных чисел с законом распределения, соответствующим обслуживанию данных, получается длительность времени обслуживания и вычисляется время окончания обслуживания, а затем фиксируется состояние ,при освобождении =0; в случае блокировки записывается =2. При поступлении заявки в Н, к его содержимому добавляется единица, т. е. , а при уходе заявки из Н, на обслуживание вычитается единица, т. е. , i=l, 2.
Возможности модификации моделирующих алгоритмов Q-схемы.В плане усложнения машинных моделей при исследовании вариантов системы S можно рассмотреть следующие модификации: наличие потоков заявок нескольких типов. В этом случае необходимо иметь несколько источников (генераторов) заявок и фиксировать признак принадлежности заявки к тому или иному потоку тогда, когда накопители и каналы рассматриваемой Q-схемы критичны к этому признаку или требуется определить характеристики обслуживания заявок каждого из потоков в отдельности.
Наличие приоритетов при постановке заявок в очередь в накопитель. В зависимости от класса приоритета заявок может быть рассмотрен случай, когда заявки одного класса имеют приоритет по записи в накопитель (при отсутствии свободных мест вытесняют из накопителя заявки с более низким классом приоритета, которые при этом считаются потерянными). Этот фактор может быть учтен в моделирующем алгоритме соответствующей Q-схемы путем фиксации для каждого накопителя признаков заявок, которые в нем находятся (путем организации соответствующего массива признаков).
1. Наличие приоритетов при выборе заявок на обслуживание каналов. По отношению к каналу могут быть рассмотрены заявки с абсолютным и относительным приоритетами. Заявки с абсолютным приоритетом при выборе из очереди в накопитель вытесняют из канала заявки с более низким классом приоритета, которые при этом снова поступают в накопитель (в начало или конец очереди) или считаются потерянными, а заявки с относительным приоритетом дожидаются окончания обслуживания каналом предыдущей заявки. Эти особенности учитываются в моделирующих алгоритмах приоритетных
Q-схем, при определении времени освобождения канала и выборе претендентов на его занятие. Если наличие абсолютных приоритетов приводит к потере заявок, то необходимо организовать фиксацию потерянных заявок.
2. Ограничение по времени пребывания заявок в системе. В этом случае возможно ограничение как по времени ожидания заявок в накопителях, так и по времени обслуживания заявок каналами, а также ограничение по сумме этих времен, т. е. по времени пребывания заявок в обслуживающем приборе. Причем эти ограничения могут рассматриваться как применительно к каждой фазе, так и к Q-схеме в целом. При этом необходимо в качестве особых состояний Q-схемы рассматривать не только моменты поступления новых заявок и моменты окончания обслуживания заявок, но и моменты окончания допустимого времени пребывания (ожидания, обслуживания) заявок в Q-схеме.
3. Выход элементов системы из строя и их дальнейшее восстановление. Такие события могут быть рассмотрены в Q-схеме, как потоки событий с абсолютными приоритетами, приводящими к потере заявок, находящихся в обслуживании в канале или ожидающих начала обслуживания в накопителе в момент выхода соответствующего элемента из строя. В этом случае в моделирующем алгоритме Q-схемы должны быть предусмотрены датчики (генераторы) отказов и восстановлений, а также должны присутствовать операторы для фиксации и обработки необходимой статистики.
Рассмотренные моделирующие алгоритмы и способы их модификации могут быть использованы для моделирования широкого класса систем. Однако эти алгоритмы будут отличаться по сложности реализации, затратам машинного времени и необходимого объема памяти ЭВМ.
Детерминированный и асинхронный циклический алгоритмы наиболее просты с точки зрения логики их построения, так как при этом используется перебор всех элементов Q-схемы на каждом шаге. Трудности возникают с машинной реализацией этих алгоритмов вследствие увеличения затрат машинного времени на моделирование, так как просматриваются все состояния элементов Q-схемы. Затраты машинного времени на моделирование существенно увеличиваются при построении детерминированных моделирующих алгоритмов Q-схем, элементы которых функционируют в различных масштабах времени, например когда длительности обслуживания заявок каналами многоканальной Q-схемы значительно отличаются друг от друга.
БЛОКИ
Разработчик конструирует модель из блоков, прибегая, как правило, к наглядной форме ее отображения в виде блок-схемы. Для удобства графического представления модели каждый блок GPSS имеет принятое стандартное обозначение. Построенная схема является одновременно программой на языке GPSS. Для ее ввода в ЭВМ необходимо последовательность блоков представить в виде списка операций, добавив к названиям блоков требуемые операнды.
Каждый блок GPSS имеет входы и выходы, с помощью которых осуществляется их связь в модели. Существуют два особых блока: GENERATE, имеющий только выход, и TERMINATE, имеющий только вход. Через блок GENERATE транзакты вводятся в модель. Блок TERMINATE удаляет транзакты из модели. Любую модель на языке GPSS можно представить в виде совокупности блоков (рис. 1.1).
Ниже дано описание основных функциональных объектов GPSS. GENERATE
Блоки модели
TERMINATE
ТРАНЗАКТЫ
Функционирование объекта отображается в модели в виде перемещения транзактов от блока GENERATE в блок TERMINATE через промежуточные блоки. Транзакты, или сообщения являются абстрактными подвижными элементами, которые могут моделировать различные объекты реального мира: сообще