Надежность и долговременность хранения информации.
Большое значение имеет надежность и долговременность хранения информации. Большую устойчивость к возможным повреждениям имеют молекулы ДНК, так как существует механизм обнаружения повреждений их структуры (мутаций) и самовосстановления.
Надежность (устойчивость к повреждениям) достаточно высока у аналоговых носителей, повреждение которых приводит к потери информации только на поврежденном участке. Поврежденная часть фотографии не лишает возможности видеть оставшуюся часть, повреждение участка магнитной ленты приводит лишь к временному пропаданию звука и так далее.
Цифровые носители гораздо более чувствительны к повреждениям, даже утеря одного бита данных на магнитном или оптическом диске может привести к невозможности считать файл, то есть к потере большого объема данных. Именно поэтому необходимо соблюдать правила эксплуатации и хранения цифровых носителей информации.
Наиболее долговременным носителем информации является молекула ДНК, которая в течение десятков тысяч лет (человек) и миллионов лет (некоторые живые организмы), сохраняет генетическую информацию данного вида.
Аналоговые носители способны сохранять информацию в течение тысяч лет (египетские папирусы и шумерские глиняные таблички), сотен лет (бумага) и десятков лет (магнитные ленты, фото- и кинопленки).
Цифровые носители появились сравнительно недавно и поэтому об их долговременности можно судить только по оценкам специалистов. По экспертным оценкам, при правильном хранении оптические носители способны хранить информацию сотни лет, а магнитные — десятки лет.
Вопросы для размышления
Какие достоинства и недостатки имеют аналоговые и цифровые носители информации?
2.34. Составить таблицу сравнения различных типов носителей информации (аналоговых и цифровых) по их возможностям хранения информации.
Глава 3
Основы логики и логические основы компьютера
Формы мышления
Первые учения о формах и способах рассуждений возникли в странах Древнего Востока (Китай, Индия), но в основе современной логики лежат учения, созданные древнегреческими мыслителями. Основы формальной логики заложил Аристотель, который впервые отделил логические формы мышления (речи) от его содержания.
Логика — это наука о формах и способах мышления.
Законы логики отражают в сознании человека свойства, связи и отношения объектов окружающего мира. Логика позволяет строить формальные модели окружающего мира, отвлекаясь от содержательной стороны.
Мышление всегда осуществляется в каких-то формах. Основными формами мышления являются понятие, высказывание и умозаключение.
Понятие. Понятие выделяет существенные признаки объекта, которые отличают его от других объектов. Объекты, объединенные понятием, образуют некоторое множество. Например, понятие «компьютер» объединяет множество электронных устройств, которые предназначены для обработки информации и обладают монитором и клавиатурой. Даже по этому короткому описанию компьютер трудно спутать с другими объектами, например с механизмами, служащими для перемещения по дорогам и хранящимися в гаражах, которые объединяются понятием «автомобиль».
Понятие — это форма мышления, фиксирующая основные, существенные признаки объекта.
Понятие имеет две стороны: содержание и объем. Содержание понятия составляет совокупность существенных признаков объекта. Чтобы раскрыть содержание понятия, следует найти признаки, необходимые и достаточные для выделения данного объекта из множества других объектов.
Например, содержание понятия «персональный компьютер» можно раскрыть следующим образом: «Персональный компьютер — это универсальное электронное устройство для автоматической обработки информации, предназначенное для одного пользователя».
Объем понятия определяется совокупностью предметов, на которую оно распространяется. Объем понятия «персональный компьютер» выражает всю совокупность (сотни миллионов) существующих в настоящее время в мире персональных компьютеров.
Высказывание. Свое понимание окружающего мира человек формулирует в форме высказываний (суждений, утверждений). Высказывание строится на основе понятий и по форме является повествовательным предложением.
Высказывания могут быть выражены с помощью не только естественных языков, но и формальных. Например, высказывание на естественном языке имеет вид «Два умножить на два равно четырем», а на формальном, математическом языке оно записывается в виде: «2 • 2 = 4».
Об объектах можно судить верно или неверно, то есть высказывание может быть истинным или ложным. Истинным будет высказывание, в котором связь понятий правильно отражает свойства и отношения реальных вещей. Примером истинного высказывания может служить следующее: «Процессор является устройством обработки информации».
Ложным высказывание будет в том случае, когда оно не соответствует реальной действительности, например: «Процессор является устройством печати».
Высказывание не может быть выражено повелительным или вопросительным предложением, так как оценка их истинности или ложности невозможна.
Конечно, иногда истинность того или иного высказывания является относительной. Истинность высказываний может зависеть от взглядов людей, от конкретных обстоятельств и так далее. Сегодня высказывание «На моем компьютере уста
новлен самый современный процессор Pentium 4» истинно, но пройдет некоторое время, появится более мощный процессор, и данное высказывание станет ложным.
Высказывание - это форма мышления, в которой что-либо утверждается или отрицается о свойствах реальных предметов и отношениях между ними. Высказывание может быть либо истинно, либо ложно.
До сих пор мы рассматривали простые высказывания. На основании простых высказываний могут быть построены составные высказывания. Например, высказывание «Процессор является устройством обработки информации и принтер является устройством печати» является составным высказыванием, состоящим из двух простых, соединенных союзом «и».
Если истинность или ложность простых высказываний устанавливается в результате соглашения на основании здравого смысла, то истинность или ложность составных высказываний вычисляется с помощью использования алгебры высказываний.
Приведенное выше составное высказывание истинно, так как истинны входящие в него простые высказывания.
а |
Умозаключение. Умозаключения позволяют на основе известных фактов, выраженных в форме суждений (высказываний), получать заключение, то есть новое знание. Примером умозаключений могут быть геометрические доказательства.
Например, если мы имеем суждение «Все углы треугольника равны», то мы можем путем умозаключения доказать, что в этом случае справедливо суждение «Этот треугольник равносторонний ».
Умозаключение - это форма мышления, с помощью которой из одного или нескольких суждений (посылок) может быть получено новое суждение (заключение).
Посылками умозаключения по правилам формальной логики могут быть только истинные суждения. Тогда, если
умозаключение проводится в соответствии с правилами формальной логики, то оно будет истинным. В противном случае можно прийти к ложному умозаключению.
Вопросы дляразмышления
1. Какие существуют основные формы мышления?
2. В чем состоит разница между содержанием и объемом понятия?
3. Может ли быть высказывание выражено в форме вопросительного предложения?
4. Как определяется истинность или ложность простого высказывания? Составного высказывания?
Алгебра высказываний
Алгебра высказываний была разработана для того, чтобы можно было определять истинность или ложность составных высказываний, не вникая в их содержание.
В аргебре высказываний суждениям (простым высказываниям) ставятся в соответствие логические переменные, обозначаемые прописными буквами латинского алфавита. Рассмотрим два простых высказывания:
А = «Два умножить на два равно четырем». В = «Два умножить на два равно пяти». Высказывания, как уже говорилось ранее, могут быть истинными или ложными. Истинному высказыванию соответствует значение логической переменной 1, а ложному — значение 0. В нашем случае первое высказывание истинно (А = 1), а второе ложно (В = 0).
В алгебре высказываний высказывания обозначаются именами логических переменных, которые могут принимать лишь два значения: «истина» (1) и «ложь» (0).
В алгебре высказываний над высказываниями можно производить определенные логические операции, в результате которых получаются новые, составные высказывания.
Для образования новых высказываний наиболее часто используются базовые логические операции, выражаемые с помощью логических связок «и», «или», «не».