Динамика численности популяций хищника и жертвы


Рассматривая динамику численности популяций хищника и жертвы, экологи, прежде всего стремятся понять ее закономерности и разъяснить различия между типами динамик. В простейших моделях хищник и жертва рассматриваются безотносительно влияния на них других видов. Одна из самых первых и простых моделей была предложена, как и модель межвидовой конкуренции, Лоткой и Вольтеррой, и носит их имя.

Модель состоит из двух компонентов: C - численность популяции хищника и N - численность популяции жертвы.

Предполагается, что в отсутствие хищника популяция жертвы растет экспоненциально. Чем больше численность той и другой популяции, тем чаще происходят встречи. Число встреченных и съеденных жертв будет зависеть от эффективности, с которой хищник находит и ловит жертву. Если обозначить через a′ "эффективность поиска", то скорость поедания жертвы будет равна a′·C·N, и окончательно для численности жертвы получаем

Динамика численности популяций хищника и жертвы - student2.ru

В отсутствие пищи отдельные особи хищника голодают и гибнут. Предположим вновь, что численность хищника в отсутствие пищи будет уменьшаться экспоненциально:

Динамика численности популяций хищника и жертвы - student2.ru

(q - смертность). Скорость рождения новых особей в данной модели полагается зависящей от двух обстоятельств: скорости потребления пищи a′·C·N, и эффективности f, с которой эта пища переходит в потомство хищника. Итак, для численности хищника окончательно получаем

Динамика численности популяций хищника и жертвы - student2.ru

Так как процессы надо рассматривать вместе, объединим уравнения в систему:

Динамика численности популяций хищника и жертвы - student2.ru

Как и в предыдущем пункте, свойства этой модели можно исследовать, построив изо-клины.

Для жертвы имеем

Динамика численности популяций хищника и жертвы - student2.ru

или, выражая C, получаем

Динамика численности популяций хищника и жертвы - student2.ru

Соответствующее уравнение изоклины для популяции хищника

Динамика численности популяций хищника и жертвы - student2.ru

Если поместить обе изоклины на одном рисунке, получим картину взаимодействия популяций (рис. 3).

Динамика численности популяций хищника и жертвы - student2.ru

Рис. 3. Динамика численности популяции хищника и жертвы. Численность обеих популяций совершает периодические колебания

Как видно на рис. 4, численности популяций хищника и жертвы совершают периодические колебания: при увеличении численности хищников уменьшается численность популяции жертвы и наоборот. Такие колебания численности будут продолжаться в соответствии с моделью до тех пор, пока какое-либо внешнее воздействие не изменит численность популяций, после чего произойдет переход в новое устойчивое состояние (такая ситуация называется "нейтральные устойчивые циклы").

Динамика численности популяций хищника и жертвы - student2.ru

Рис. 3. Динамика численности популяции хищника и жертвы при r = 5, a′ = 0,1, q = 2, f = 0,6, N0 = 150, C0 = 50. Сплошная линия - численность жертвы, штриховая - хищника

РАЗДЕЛ 3. ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ

Основные понятия. Имитационное моделирование. Методы имитационного моделирования. Единичный жребий и формы его организации. Классификация имитационных моделей.

Имитационное моделирование


Имитационное моделирование широко применяется в биологии. Рассмотрим одну из самых распространенных имитационных моделей, предложенную Джоном Канвеем - игра "Жизнь"

Игра "Жизнь"


Для построения алгоритма игры рассмотрим квадратное поле из n+1 столбцов и строк с обычной нумерацией от 0 до n. Крайние граничные столбцы и строки для удобства определим как "мертвую зону", они играют лишь вспомогательную роль.

Для любой внутренней клетки поля с координатами (i,j) можно определить 8 соседей. Примем, что если клетка живая, то ее закрашиваем, если клетка мертвая, то она пустая.

Зададим правила игры.

Если клетка (i,j) живая и в окружении более трех живых клеток, то она погибает (от перенаселения). Живая клетка также погибает, если в окружении менее двух живых клеток (от одиночества). Мертвая клетка оживает, если вокруг нее имеется три живые клетки.

Начальное количество живых клеток и расположение их на поле определяется либо случайным образом, либо мы можем задать нужное нам количество живых клеток и определить их расположение определенным образом и смотреть, как они будут себя вести. Есть устойчивые структуры - пропеллер - три клетки в ряд, есть стабильные структуры - квадрат с просветом внутри, есть структуры, которые повторяют себя через определенное количество циклов и т.д.

Если располагать клетки случайным образом, то с помощью игры жизнь можно построить модель внутривидовой конкуренции (трава - зайцы), межвидовой конкуренции (зайцы - лисы), модель распространения инфекции и т.д.

Наши рекомендации