Модели. разновидности моделирования.
Слово «модель» произошло от латинского слова «modulus», означает «мера», «образец». Его первоначальное значение было связано со строительным искусством, и почти во всех европейских языках оно употреблялось для обозначения образа или прообраза, или вещи, сходной в каком-то отношении с другой вещью.
Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ век. Однако методология моделирования долгое время развивалась отдельными науками независимо друг от друга. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.
Термин «модель» широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. В этом разделе мы будем рассматривать только такие модели, которые являются инструментами получения знаний.
Модель – это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.
Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.
Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом, и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.
В самом общем случае при построении модели исследователь отбрасывает те характеристики, параметры объекта-оригинала, которые несущественны для изучения объекта. Выбор характеристик объекта-оригинала, которые при этом сохраняются и войдут в модель, определяется целями моделирования. Обычно такой процесс абстрагирования от несущественных параметров объекта называют формализацией. Более точно, формализация – это замена реального объекта или процесса его формальным описанием.
Основное требование, предъявляемое к моделям – это их адекватность реальным процессам или объектам, которые замещает модель.
Практически во всех науках о природе, живой и неживой, об обществе, построение и использование моделей является мощным орудием познания. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим (а иногда и единственным) способом их изучения часто является построение и исследование модели, отображающей лишь какую-то грань реальности и потому многократно более простой, чем эта реальность. Многовековой опыт развития науки доказал на практике плодотворность такого подхода. Более конкретно, необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует слишком много времени и средств.
В моделировании есть два различных подхода. Модель может быть похожей копией объекта, выполненной из другого материала, в другом масштабе, с отсутствием ряда деталей. Например, это игрушечный кораблик, домик из кубиков, деревянная модель самолета в натуральную величину, используемая в авиаконструировании и др. Модели такого рода называют натурными.
Модель может, однако, отображать реальность более абстрактно – словесным описанием в свободной форме, описанием, формализованным по каким-то правилам, математическими соотношениями и т.п. Будем называть такие модели абстрактными.
Классификация абстрактных моделей:
1. Вербальные (текстовые) модели. Эти модели используют последовательности предложений на формализованных диалектах естественного языка для описания той или иной области действительности (примерами такого рода моделей являются милицейский протокол, правила дорожного движения).
2. Математические модели – очень широкий класс знаковых моделей (основанных на формальных языках над конечными алфавитами), использующих те или иные математические методы. Например, математическая модель звезды будет представлять собой сложную систему уравнений, описывающих физические процессы, происходящие в недрах звезды. Другой математической моделью являются, например, математические соотношения, позволяющие рассчитать оптимальный (наилучший с экономической точки зрения) план работы какого-либо предприятия.
3. Информационные модели – класс знаковых моделей, описывающих информационные процессы (получение, передачу, обработку, хранение и использование информации) в системах самой разнообразной природы. Примерами таких моделей могут служить OSI – семиуровневая модель взаимодействия открытых систем в компьютерных сетях, или машина Тьюринга – универсальная алгоритмическая модель.
Подчеркнем, что граница между вербальными, математическими и информационными моделями может быть проведена весьма условно. Так, информационные модели иногда считают подклассом математических моделей. Однако, в рамках информатики как самостоятельной науки, отделенной от математики, физики, лингвистики и других наук, выделение информационных моделей в отдельный класс является целесообразным.
Отметим, что существуют и иные подходы к классификации абстрактных моделей; общепринятая точка зрения здесь еще не установилась.
В прикладных науках различают следующие виды абстрактных моделей:
1) чисто аналитические математические модели, не использующие компьютерных средств;
2) информационные модели, имеющие приложения в информационных системах;
3) вербальные языковые модели;
4) компьютерные модели, которые могут использоваться для:
• численного математического моделирования;
• визуализации явлений и процессов (как для аналитических, так и для численных моделей);
• специализированных прикладных технологий, использующих компьютер (как правило, в режиме реального времени) в сочетании с измерительной аппаратурой, датчиками и т.п.
Большая часть данного курса связана с прикладными математическими моделями, в реализации которых используются компьютеры. Это вызвано тем, что внутри информатики именно компьютерное математическое и компьютерное информационное моделирование могут рассматриваться как ее составные части..
В зависимости от средств построения различают следующие классы моделей:
- словесные или описательные модели их также в некоторой литературе называют вербальными или текстовыми моделями (например, милицейский протокол с места проишествия, стихотворение Лермонтова "Тиха украинская ночь");
- натурные модели (макет Солнечной системы, игрушечный кораблик);
- абстрактные или знаковые модели. Интересующие нас математические модели явлений и компьютерные модели относятся как раз к этому классу.
Можно классифицировать модели по предметной области:
- физические модели,
- биологические,
- социологические,
- экономические и т.д.
Классификация модели по применяемому математическому аппарату:
- модели, основанные на применении обыкновенных дифференциальных уравнений;
- модели, основанные на применении уравнений в частных производных;
- вероятностные модели и т.д.
Также можно классифицировать модели по цели моделирования. В зависимости от целей моделирования различают:
- Дескриптивные модели (описательные) описывают моделируемые объекты и явления и как бы фиксируют сведения человека о них. Примером может служить модель Солнечной системы, или модель движения кометы, в которой мы моделируем траекторию ее полета, расстояние, на котором она пройдет от Земли У нас нет никаких возможностей повлиять на движение кометы или движение планет Солнечной системы;
- Оптимизационные модели служат для поиска наилучших решений при соблюдении определенных условий и ограничений. В этом случае в модель входит один или несколько параметров, доступных нашему влиянию, например, известная задача коммивояжера, оптимизируя его маршрут, мы снижаем стоимость перевозок. Часто приходится оптимизировать процесс по нескольким параметрам сразу, причем цели могут быть весьма противоречивы, например, головная боль любой хозяйки - как вкуснее, калорийнее и дешевле накормить семью;
- Игровые модели (компьютерные игры);
- Обучающие модели (всевозможные тренажеры);
- Имитационные модели (модели, в которых сделана попытка более или менее полного и достоверного воспроизведения некоторого реального процесса, например, моделирование движения молекул в газе, поведение колонии микробов и т.д.).
Существует также классификация моделей в зависимости от их изменения во времени. Различают
- Статические модели - неизменные во времени;
- Динамические модели – это модели, состояние которых меняется со временем.