Сетевая операционная система реального времени QNX
Вспомним основные принципы, обязательная реализация которых позволяет создавать операционные системы реального времени (ОСРВ). Первым обязательным требованием к архитектуре операционной системы реального времени является многозадачность в истинном смысле этого слова. Очевидно, что варианты с псевдомногозадачностью (а точнее, с невытесняющей многозадачностью) в системах Windows 3.X или Novell NetWare неприемлемы, поскольку они допускают возможность блокировки или даже полного развала системы одним неправильно работающим процессом. Для предотвращения блокировок вычислений ОСРВ должна использовать квантование времени (то есть использовать вытесняющую, а не кооперативную многозадачность), что сделать достаточно просто. Вторая проблема — организация надежных вычислений — может быть эффективно решена за счет специальных аппаратных возможностей процессора. При построении системы для работы на персональных компьютерах типа IBM PC для этого необходимы процессоры типа Intel 80386 и выше, чтобы иметь возможность организовать функционирование операционной системы в защищенном (32-разрядном) режиме работы процессора. Для эффективного обслуживания прерываний операционная система должна использовать алгоритм диспетчеризации, обеспечивающий вытесняющее планирование, основанное на приоритетах. Наконец, крайне желательна эффективная поддержка сетевых коммуникаций и наличие развитых механизмов взаимодействия между процессами, поскольку реальные технологические системы обычно управляются целым комплексом компьютеров и/или контроллеров. Весь-
Сетевая операционная система реального времени QNX__________________ 341
ма желательно также, чтобы операционная система поддерживала многопоточность (не только мультипрограммный, но и мультизадачный режимы) и симметричную мультипроцессорность. И наконец, при соблюдении всех перечисленных условий операционная система должна быть способна работать на ограниченных аппаратных ресурсах, поскольку одна из ее основных областей применения — встроенные системы. К сожалению, данное условие обычно реализуется путем простого урезания стандартных сервисных средств.
Операционная система QNX является мощной операционной системой, разработанной для процессоров с архитектурой ia32. Она позволяет проектировать сложные программные комплексы, работающие в реальном времени как на отдельном компьютере, так и в локальной вычислительной сети. Встроенные средства QNX обеспечивают поддержку многозадачного режима на одном компьютере и взаимодействие параллельно выполняемых задач на разных компьютерах, работающих в среде локальной вычислительной сети. Таким образом, эта операционная система хорошо подходит для построения распределенных систем.
Основным языком программирования в системе является С. Основная операционная среда соответствует стандарту POSIX. Это позволяет с небольшими доработками переносить ранее разработанное программное обеспечение в QNX для организации их работы в среде распределенной обработки.
Операционная система QNX, будучи сетевой и мультизадачной, в то же время является многопользовательской (многотерминальной). Кроме того, она масштабируема. С точки зрения пользовательского интерфейса и интерфейса прикладного программирования она очень похожа на UNIX, поскольку выполняет требования стандарта POSIX. Однако QNX — это не версия UNIX, хотя почему-то многие так считают. Система QNX была разработана, что называется, «с нуля» канадской фирмой QNX Software Systems Limited в 1989 году по заказу Министерства обороны США, причем на совершенно иных архитектурных принципах, нежели использовались при создании операционной системы UNIX.
QNX была первой коммерческой операционной системой, построенной на принципах микроядра и обмена сообщениями. Система реализована в виде совокупности независимых (но взаимодействующих путем обмена сообщениями) процессов различного уровня (менеджеры и драйверы), каждый из которых реализует определенный вид услуг. Эти идеи позволили добиться нескольких важнейших преимуществ. Вот как об этом написано на сайте, посвященном операционной системе QNX [14].
- Предсказуемость означает применимость системы к задачам жесткого реального времени. QNX является операционной системой, которая дает полную гарантию того, что процесс с наивысшим приоритетом начнет выполняться практически немедленно, и критически важное событие (например, сигнал тревоги) никогда не будет потеряно. Ни одна версия UNIX не может достичь подобного качества, поскольку нереентерабельный код ядра слишком велик. Любой системный вызов из обработчика прерывания в UNIX может привести к непредсказуемой задержке (то же самое можно сказать про Windows NT).
342________________ Глава 10. Краткий обзор современных операционных систем
- Масштабируемость и эффективность достигаются оптимальным использова
нием ресурсов и означают применимость QNX для встроенных (embedded) си
стем. В данном случае мы не увидим в каталоге /dev множества файлов, соот
ветствующих ненужным драйверам, что характерно для UNIX-систем. Драйверы
и менеджеры можно запускать и удалять (кроме файловой системы, что оче
видно) динамически, просто из командной строки. Мы можем иметь только те
услуги, которые нам реально нужны, причем это не требует серьезных усилий и
не порождает проблем.
- Расширяемость и надежность обеспечиваются одновременно, поскольку написанный драйвер не нужно компилировать в ядро, рискуя вызвать нестабильность системы. Менеджеры ресурсов (служба логического уровня) работают в третьем кольце защиты, и вы можете добавлять свои менеджеры, не опасаясь за систему. Драйверы работают в первом кольце и могут вызвать проблемы, но не фатального характера. Кроме того, их достаточно просто писать и отлаживать.
- Быстрый сетевой протокол FLEEP прозрачен для обмена сообщениями, автоматически обеспечивает отказоустойчивость, балансирование нагрузки и маршрутизацию между альтернативными путями доступа.
- Компактная графическая подсистема Photon, построенная на тех же принци
пах модульности, что и сама операционная система, позволяет получить пол
нофункциональный интерфейс GUI (расширенный интерфейс Motif), работа
ющий вместе с POSIX-совместимой операционной системой всего в 4 Мбайт
памяти, начиная с i80386 процессора.
Архитектура системы QNX
Итак, QNX — это операционная система реального времени для персональных компьютеров, позволяющая эффективно организовать распределенные вычисления. В системе реализована концепция связи между задачами на основе сообщений, посылаемых от одной задачи к другой, причем задачи эти могут решаться как на одном и том же компьютере, так и на разных, но связанных между собой локальной вычислительной сетью. Реальное время и концепция связи между процессами посредством сообщений оказывают решающее влияние и на разрабатываемое для операционной системы QNX программное обеспечение, и на программиста, стремящегося с максимальной выгодой использовать преимущества системы.
Микроядро операционной системы QNX имеет объем всего в несколько десятков килобайтов (в одной из версий — 10 Кбайт, в другой — менее 32 Кбайт, хотя есть вариант и на 46 Кбайт), то есть это одно из самых маленьких ядер среди всех существующих операционных систем. В этом объеме помещаются [26]:
- механизм передачи сообщений между процессами IPC (Inter Process Commu
nication — взаимодействие между процессами);
- редиректор (redirector) прерываний;
1 Это фирменная технология, о которой несколько более подробно рассказано далее.
Сетевая операционная система реального времени QNX______________________ 343
- блок планирования выполнения задач (иначе говоря, диспетчер задач); - сетевой интерфейс для перенаправления сообщений (менеджер Net).
Механизм IPC обеспечивает пересылку сообщений между процессами и является одной из важнейших частей операционной системы, так как все взаимодействие между процессами, в том числе и системными, происходит через сообщения. Сообщение в операционной системе QNX — это последовательность байтов произвольной длины (0-65 535 байт) произвольного формата. Протокол обмена сообщениями может выглядеть, например, таким образом. Задача блокируется для ожидания сообщения. Другая задача посылает первой сообщение и при этом блокируется сама, ожидая ответа. Первая задача деблокируется, обрабатывает сообщение и отвечает, деблокируя вторую задачу.
Сообщения и ответы, пересылаемые между процессами при их взаимодействии, находятся в теле отправляющего их процесса до того момента, когда они могут быть приняты. Это означает, что, с одной стороны, снижается вероятность повреждения сообщения в процессе передачи, а с другой — уменьшается объем оперативной памяти, необходимый для работы ядра. Кроме того, становится меньше пересылок из памяти в память, что разгружает процессор. Особенностью процесса передачи сообщений является то, что в сети, состоящей из нескольких компьютеров, работающих под управлением QNX, сообщения могут прозрачно передаваться процессам, выполняющимся на любом из узлов. Определены в QNX еще и два дополнительных метода передачи сообщений — метод представителей (proxy) и метод сигналов (signal).
Представители используются в случаях, когда процесс должен передать сообщение, но не должен при этом блокироваться на передачу. Тогда вызывается функция qnx_proxy_attach() и создается представитель. Он накапливает в себе сообщения, которые должны быть доставлены другим процессам. Любой процесс, знающий идентификатор представителя, может вызвать функцию Trigger(), после чего будет доставлено первое в очереди сообщение. Функция Trigger() может вызываться несколько раз, и каждый раз представитель будет доставлять следующее сообщение. При этом представитель содержит буфер, в котором может храниться до 65 535 сообщений.
Как известно, механизм сигналов уже давно используется в операционных системах, в том числе и в UNIX. Операционная система QNX также поддерживает множество сигналов, совместимых с POSIX, большое количество сигналов, традиционно использовавшихся в UNIX (поддержка этих сигналов требуется для совместимости с переносимыми приложениями, ни один из системных процессов QNX их не генерирует), а также несколько сигналов, специфичных для самой системы QNX. По умолчанию любой сигнал, полученный процессом, приводит к завершению процесса (кроме нескольких сигналов, которые по умолчанию игнорируются). Но процесс с приоритетом уровня суперпользователя может защититься от нежелательных сигналов. В любом случае процесс может содержать обработчик для каждого возможного сигнала. Сигналы удобно рассматривать как разновидность программных прерываний.
Редиректор прерываний является частью ядра и занимается перенаправлением аппаратных прерываний в связанные с ними процессы. Благодаря такому подходу
344________________ Глава 10. Краткий обзор современных операционных систем
возникает один побочный эффект — с аппаратной частью компьютера работает ядро, оно перенаправляет прерывания процессам — обработчикам прерываний. Обработчики прерываний обычно встроены в процессы, хотя каждый из них исполняется асинхронно с процессом, в который он встроен. Обработчик исполняется в контексте процесса и имеет доступ ко всем глобальным переменным процесса. При работе обработчика прерываний прерывания разрешены, но обработчик приостанавливается только в том случае, если произошло более высокоприоритетное прерывание. Если это позволяется аппаратной частью, к одному прерыванию может быть подключено несколько обработчиков, каждый из которых получит управление при возникновении прерывания.
Этот механизм позволяет пользователю избегать работы с аппаратным обеспечением напрямую и тем самым избегать конфликтов между различными процессами, работающими с одним и тем же устройством. Для обработки сигналов от внешних устройств чрезвычайно важно минимизировать время между возникновением события и началом непосредственной его обработки. Этот фактор существен в любой области применения: от работы терминальных устройств до обработки высокочастотных сигналов.
Блок планирования выполнения задач обеспечивает многозадачность. В этом плане операционная система QNX предоставляет разработчику огромный простор для выбора той дисциплины выделения ресурсов процессора задаче, которая обеспечит наиболее подходящие условия для выполнения критически важных приложений, а обычным приложениям обеспечит такие условия, при которых они будут выполняться за разумное время, не мешая работе критически важных приложений.
К выполнению своих функций как диспетчера ядро приступает в следующих случаях:
- какой-либо процесс вышел из блокированного состояния;
- истек квант времени для процесса, владеющего центральным процессором;
- работающий процесс прерван каким-либо событием.
Диспетчер выбирает процесс для запуска среди неблокированных процессов в порядке значений их приоритетов в диапазоне от 0 (наименьший) до 31 (наибольший). Обслуживание каждого из процессов зависит от метода его диспетчеризации (приоритет и метод диспетчеризации могут динамически меняться во время работы). В QNX существуют три метода диспетчеризации:
- очередь (First In First Out, FIFO) — раньше пришедший процесс раньше об
служивается;
- карусель (Round Robin, RR) — процессу выделяется определенный квант вре
мени для работы, после чего процессор предоставляется следующему процессу;
- адаптивный метод (используется чаще других).
Метод FIFO наиболее близок к невытесняющей многозадачности. То есть процесс выполняется до тех пор, пока он не перейдет в состояние ожидания сообщения, в состояние ожидания ответа на сообщение или не отдаст управление ядру. При переходе в одно из таких состояний процесс помещается последним в очередь про-
Сетевая операционная система реального времени QNX______________________ 345
цессов с таким же уровнем приоритета, а управление передается процессу с наибольшим приоритетом.
В методе RR все происходит так же, как и в предыдущем, с той разницей, что период, в течение которого процесс может работать без перерыва, ограничивается неким квантом времени.
Процесс, работающий в соответствии с адаптивным методом, ведет себя следующим образом:
- если процесс полностью использует выделенный ему квант времени, а в систе
ме есть готовые к исполнению процессы с тем же уровнем приоритета, его при
оритет снижается на 1;
- если процесс с пониженным приоритетом остается необслуженным в течение
секунды, его приоритет увеличивается на 1;
- если процесс блокируется, ему возвращается исходное значение приоритета.
По умолчанию процессы запускаются в режиме адаптивной многозадачности. В этом же режиме работают все системные утилиты QNX. Процессы, работающие в разных режимах многозадачности, могут одновременно находиться в памяти и исполняться. Важный элемент реализации многозадачности — приоритет процесса. Обычно приоритет процесса устанавливается при его запуске. Но есть дополнительная возможность, называемая вызываемым клиентом приоритетом. Как правило, она реализуется для серверных процессов (исполняющих запросы на какое-либо обслуживание). При этом приоритет процесса-сервера устанавливается только на время обработки запроса и становится равным приоритету процесса-клиента.
Сетевой интерфейс в операционной системе QNX является неотъемлемой частью ядра. Он, конечно, взаимодействует с сетевым адаптером через сетевой драйвер, но базовые сетевые службы реализованы на уровне ядра. При этом передача сообщения процессу, находящемуся на другом компьютере, ничем не отличается с точки зрения приложения от передачи сообщения процессу, выполняющемуся на том же компьютере. Благодаря такой организации сеть превращается в однородную вычислительную среду. При этом для большинства приложений не имеет значения, с какого компьютера они были запущены, на каком исполняются и куда поступают результаты их работы.
Все службы операционной системы QNX, не реализованные непосредственно в ядре, работают как обычные стандартные процессы в полном соответствии с основными концепциями микроядерной архитектуры. С точки зрения операционной системы эти системные процессы ничем не отличаются от всех остальных. Как, впрочем, и драйверы устройств. Единственное, что нужно сделать, чтобы новый драйвер устройства стал частью операционной системы, — изменить конфигурационный файл системы так, чтобы драйвер запускался при загрузке.