Сегментно-страничное распределение памяти. Разделяемые сегменты памяти.
Данный метод - комбинация страничного и сегментного механизмов управления памятью, и направлен на реализацию достоинств обоих подходов. Так же как и при сегментной организации памяти, виртуальное адресное пространство процесса разделено на сегменты. Это позволяет определять разные права доступа к разным частям кодов и данных программы. Но перемещение данных между памятью и диском осуществляется страницами. Для этого каждый виртуальный сегмент и физическая память делятся на страницы равного размера, что позволяет более эффективно использовать память, сократив до минимума фрагментацию. В большинстве современных реализаций сегментно-страничной организации памяти в отличие от набора виртуальных диапазонов адресов при сегментной организации памяти все виртуальные сегменты образуют одно непрерывное линейное виртуальное адресное пространство.
Координаты байта в виртуальном адресном пространстве при сегментно-страничной организации можно задать двумя способами. Во-первых, линейным виртуальным адресом, который равен сдвигу данного байта относительно границы общего линейного виртуального пространства, во-вторых, парой чисел, одно из которых является номером сегмента, а другое — смещением относительно начала сегмента. При этом в отличие от сегментной модели, для однозначного задания виртуального адреса вторым способом необходимо каким-то образом указать также начальный виртуальный адрес сегмента с данным номером. Системы виртуальной памяти ОС с сегментно-страничной организацией используют второй способ, так как он позволяет непосредственно определить принадлежность адреса некоторому сегменту и проверить права доступа процесса к нему.
Для каждого процесса операционная система создает отдельную таблицу сегментов, в которой содержатся дескрипторы всех сегментов процесса. Описание сегмента включает назначенные ему права доступа и другие характеристики, подобные тем, которые содержатся в дескрипторах сегментов при сегментной организации памяти. Однако в поле базового адреса указывается не начальный физический адрес сегмента, отведенный ему в результате загрузки в оперативную память, а начальный линейный виртуальный адрес сегмента в пространстве виртуальных адресов. Наличие базового виртуального адреса сегмента в дескрипторе позволяет однозначно преобразовать адрес, заданный в виде пары, в линейный виртуальный адрес байта, который затем преобразуется в физический адрес страничным механизмом.
Деление на страницы осуществляется так же, как это делается при страничной организации памяти. Размер страниц выбирается равным степени двойки, что упрощает механизм преобразования виртуальных адресов в физические. Виртуальные страницы нумеруются в пределах виртуального адресного пространства каждого процесса, а физические страницы — в пределах оперативной памяти. При создании процесса в память загружается только часть страниц, остальные загружаются по мере необходимости. Время от времени система выгружает уже ненужные страницы, освобождая память. ОС ведет для каждого процесса таблицу страниц, в которой указывается соответствие виртуальных страниц физическим. Базовые адреса таблицы сегментов и таблицы страниц процесса являются частью его контекста. При активизации процесса эти адреса загружаются в специальные регистры процессора и используются механизмом преобразования адресов. Преобразование виртуального адреса в физический происходит в два этапа:
1. На первом этапе работает механизм сегментации. Исходный виртуальный адрес, заданный в виде пары, преобразуется в линейный виртуальный адрес. Для этого на основании базового адреса таблицы сегментов и номера сегмента вычисляется адрес дескриптора сегмента. Анализируются поля дескриптора и выполняется проверка возможности выполнения заданной операции. Если доступ к сегменту разрешен, то вычисляется линейный виртуальный адрес путем сложения базового адреса сегмента, извлеченного из дескриптора, и смещения, заданного в исходном виртуальном адресе.
2. На втором этапе работает страничный механизм. Полученный линейный виртуальный адрес преобразуется в искомый физический адрес. В результате преобразования линейный виртуальный адрес представляется в том виде, в котором он используется при страничной организации памяти (в виде пары). Так как размер страницы равен степени двойки, просто отделяется некоторое количество младших двоичных разрядов. При этом в старших разрядах содержится номер виртуальной страницы, а в младших — смещение искомого элемента относительно начала страницы. Далее преобразование адреса происходит так же, как при страничной организации: старшие разряды линейного виртуального адреса, содержащие номер виртуальной страницы, заменяются номером физической страницы, взятым из таблицы страниц, а младшие разряды виртуального адреса, содержащие смещение, остаются без изменения.
Еще одна возможная схема управления памятью. Виртуальное пространство процесса так же делится на сегменты, а каждый сегмент делится на виртуальные страницы. Первое отличие: виртуальные страницы нумеруются в пределах сегмента. Виртуальный адрес теперь выражается тройкой (номер сегмента, номер страницы, смещение в странице). Загрузка процесса выполняется операционной системой постранично, при этом часть страниц размещается в оперативной памяти, а часть — на диске. Для каждого процесса создается собственная таблица сегментов, а для каждого сегмента — своя таблица страниц. Адрес таблицы сегментов загружается в специальный регистр процессора, когда активизируется соответствующий процесс.
Таблица страниц содержит дескрипторы страниц. Таблица сегментов состоит из дескрипторов сегментов, которые вместо информации о расположении сегментов в виртуальном адресном пространстве содержат описание расположения таблиц страниц в физической памяти. Это – второе существенное отличие от первого подхода.
Подсистема виртуальной памяти – удобный механизм для решения задачи совместного доступа нескольких процессов к одному и тому же сегменту памяти, который в этом случае называется разделяемой памятью. Хотя основной задачей операционной системы при управлении памятью является защита областей оперативной памяти одного процесса от доступа к ней остальных процессов, в некоторых случаях оказывается полезным организовать контролируемый совместный доступ нескольких процессов к определенной области памяти.
Для организации разделяемого сегмента при наличии подсистемы виртуальной памяти достаточно поместить его в виртуальное адресное пространство каждого процесса, которому нужен доступ к данному сегменту, а затем настроить параметры отображения этих виртуальных сегментов так, чтобы они соответствовали одной и той же области оперативной памяти. Детали такой настройки зависят от типа используемой в ОС модели виртуальной памяти, причём чисто страничная организация не поддерживает понятие «сегмент», что делает невозможным решение рассматриваемой задачи. Например, при сегментной организации необходимо в дескрипторах виртуального сегмента каждого процесса указать один и тот же базовый физический адрес. При сегментно-страничной организации отображение на одну и ту же область памяти достигается за счет соответствующей настройки таблицы страниц каждого процесса.
Разделяемый сегмент помещается в индивидуальную часть виртуального адресного пространства каждого процесса и описывается в каждом процессе индивидуальным дескриптором сегмента (+ страниц, если есть). «Попадание» же этих виртуальных сегментов на общую часть оперативной памяти достигается за счет согласованной настройки ОС многочисленных дескрипторов для множества процессов. Возможно и более экономичное для ОС решение этой задачи — помещение единственного разделяемого виртуального сегмента в общую часть виртуального адресного пространства процессов, то есть в ту часть, которая обычно используется для модулей ОС. В этом случае настройка дескриптора сегмента (и дескрипторов страниц) выполняется только один раз, а все процессы пользуются такой настройкой и совместно используют часть оперативной памяти.