Мультипрограммные ОС мейнфреймов.
В это время в технической базе вычислительных машин произошел переход от отдельных полупроводниковых элементов типа транзисторов к интегральным микросхемам, что открыло путь к появлению следующего поколения компьютеров. Большие функциональные возможности интегральных схем сделали возможным реализацию на практике сложных компьютерных архитектур, таких, например, как IBM/360.
В этот период были реализованы практически все основные механизмы, присущие современным ОС: мультипрограммирование, мультипроцессирование, поддержка многотерминального многопользовательского режима, виртуальная память, файловые системы, разграничение доступа и сетевая работа.
В эти годы начинается расцвет системного программирования. В условиях резко возросших возможностей компьютера по обработке и хранению данных выполнение только одной программы в каждый момент времени оказалось крайне неэффективным. Решением стало мультипрограммирование — способ организации вычислительного процесса, при котором в памяти компьютера находилось одновременно несколько программ, попеременно выполняющихся на одном процессоре. Эти усовершенствования значительно улучшили эффективность вычислительной системы: компьютер теперь мог использоваться почти постоянно, а не менее половины времени работы компьютера, как это было раньше. Мультипрограммирование было реализовано в двух вариантах — в системах пакетной обработки и разделения времени.
Мультипрограммные системы пакетной обработки так же, как и их однопрограммные предшественники, имели своей целью обеспечение максимальной загрузки аппаратуры компьютера, однако решали эту задачу более эффективно. В мультипрограммном пакетном режиме процессор не простаивал, пока одна программа выполняла операцию ввода-вывода, а переключался на другую готовую к выполнению программу. Для того чтобы хотя бы частично вернуть пользователям ощущение непосредственного взаимодействия с компьютером, был разработан другой вариант мультипрограммных систем — системы разделения времени.
Вариант мультипрограммирования, применяемый в системах разделения времени, был нацелен на создание для каждого отдельного пользователя иллюзии единоличного владения вычислительной машиной за счет периодического выделения каждой программе своей доли процессорного времени. Многотерминальный режим использовался не только в системах разделения времени, но и в системах пакетной обработки.
К этому времени можно констатировать существенное изменение в распределении функций между аппаратными и программными средствами компьютера. Операционные системы становились неотъемлемыми элементами компьютеров, играя роль «продолжения» аппаратуры.
Еще одной важной тенденцией этого периода является создание семейств программно-совместимых машин и операционных систем для них. Примерами семейств программно-совместимых машин, построенных на интегральных микросхемах, являются серии машин IBM/360 и IBM/370, PDP-11. Программная совместимость требовала и совместимости операционных систем. Операционные системы этого поколения были очень дорогими.
В начале 70-х годов появились первые сетевые операционные системы, которые в отличие от многотерминальных ОС позволяли не только рассредоточить пользователей, но и организовать распределенное хранение и обработку данных между несколькими компьютерами, связанными электрическими связями. В 1969 году Министерство обороны США инициировало работы по объединению суперкомпьютеров оборонных и научно-исследовательских центров в единую сеть. Эта сеть получила название ARPANET и явилась отправной точкой для создания самой известной ныне глобальной сети — Интернета. Сеть ARPANET объединяла компьютеры разных типов, работавшие под управлением различных ОС с добавленными модулями, реализующими коммуникационные протоколы, общие для всех компьютеров сети. В 1974 году компания IBM объявила о создании собственной сетевой архитектуры для своих мэйнфреймов, получившей название SNA (System Network Architecture). Эта многоуровневая архитектура, во многом подобная стандартной модели OSI, появившейся несколько позже, обеспечивала взаимодействие типа «терминал-терминал», «терминал-компьютер» и «компьютер-компьютер» по глобальным связям.
ОС миникомпьютеров.
К середине 70-х годов наряду с мэйнфреймами широкое распространение получили мини-компьютеры, такие как PDP-11, Nova, HP. Мини-компьютеры первыми использовали преимущества больших интегральных схем, позволившие реализовать достаточно мощные функции при сравнительно невысокой стоимости компьютера. Архитектура мини-компьютеров была значительно упрощена по сравнению с мэйнфреймами, что нашло отражение и в их операционных системах. Многие функции мультипрограммных многопользовательских ОС мэйнфреймов были усечены, учитывая ограниченность ресурсов мини-компьютеров. Операционные системы мини-компьютеров часто стали делать специализированными, например только для управления в реальном времени или только для поддержания режима разделения времени.
Важной вехой в истории мини-компьютеров и вообще в истории операционных систем явилось создание ОС UNIX. Первоначально эта ОС предназначалась для поддержания режима разделения времени в мини-компьютере PDP-7. С середины 70-х годов началось массовое использование ОС UNIX. Широкое распространение эффективных С-компиляторов сделало UNIX уникальной для того времени ОС, обладающей возможностью сравнительно легкого переноса на различные типы компьютеров. Поскольку эта ОС поставлялась вместе с исходными кодами, то она стала первой открытой ОС, которую могли совершенствовать простые пользователи-энтузиасты.
Доступность мини-компьютеров и вследствие этого их распространенность на предприятиях послужили мощным стимулом для создания локальных сетей. Предприятие могло себе позволить иметь несколько мини-компьютеров, находящихся в одном здании или даже в одной комнате. Естественно, возникала потребность в обмене информацией между ними и в совместном использовании дорогого периферийного оборудования. Первые локальные сети строились с помощью нестандартного коммуникационного оборудования, в простейшем случае — путем прямого соединения последовательных портов компьютеров. Программное обеспечение также было нестандартным и реализовывалось в виде пользовательских приложений. Первое сетевое приложение для ОС UNIX — программа UUCP — появилась в 1976 году и начала распространяться с версией 7 AT&T UNIX с 1978 года. Эта программа позволяла копировать файлы с одного компьютера на другой в пределах локальной сети через различные аппаратные интерфейсы.
ОС в 80-е годы.
К наиболее важным событиям этого десятилетия можно отнести разработку стека TCP/IP, становление Интернета, стандартизацию технологий локальных сетей, появление персональных компьютеров и операционных систем для них. Рабочий вариант стека протоколов TCP/IP был создан в конце 70-х годов. В 1983 году стек протоколов TCP/IP был принят Министерством обороны США в качестве военного стандарта. Внедрение протоколов TCP/IP в ARPANET придало этой сети все основные черты, которые отличают современный Интернет. Для обозначения составной сети ARPANET и MILNET стало использоваться название Internet, которое в русском языке со временем превратилось в Интернет. Интернет стал отличным полигоном для испытаний многих сетевых операционных систем, позволившим проверить в реальных условиях возможности их взаимодействия.
Все десятилетие было отмечено постоянным появлением новых, все более совершенных версий ОС UNIX. Среди них были и фирменные версии UNIX: SunOS, HP-UX, Irix, AIX и многие другие, в которых производители компьютеров адаптировали код ядра и системных утилит для своей аппаратуры.
Начало 80-х годов связано с еще одним знаменательным для истории операционных систем событием — появлением персональных компьютеров. Компьютеры стали широко использоваться неспециалистами, что потребовало разработки «дружественного» программного обеспечения, и предоставление этих «дружественных» функций стало прямой обязанностью операционных систем.
Первая версия наиболее популярной операционной системы раннего этапа развития персональных компьютеров — MS-DOS компании Microsoft. Это была однопрограммная однопользовательская ОС с интерфейсом командной строки, способная стартовать с дискеты. Основными задачами для нее были управление файлами, расположенными на гибких и жестких дисках в UNIX-подобной иерархической файловой системе, а также поочередный запуск программ. MS-DOS не была защищена от программ пользователя. Недостающие функции для MS-DOS и подобных ей ОС компенсировались внешними программами, предоставлявшими пользователю удобный графический интерфейс или средства тонкого управления диска. Наибольшее влияние на развитие программного обеспечения для персональных компьютеров оказала операционная среда Windows компании Microsoft, представлявшая собой надстройку над MS-DOS. Сетевые функции также реализовывались в основном сетевыми оболочками, работавшими поверх ОС. При сетевой работе всегда необходимо поддерживать многопользовательский режим, при котором один пользователь — интерактивный, а остальные получают доступ к ресурсам компьютера по сети. Вместе с выпуском версии MS-DOS 3.1 в 1984 году компания Microsoft также выпустила продукт, называемый Microsoft Networks, который обычно неформально называют MS-NET.
В 1987 году в результате совместных усилий Microsoft и IBM появилась первая многозадачная операционная система для персональных компьютеров с процессором Intel 80286, в полной мере использующая возможности защищенного режима — OS/2. Она поддерживала вытесняющую многозадачность, виртуальную память, графический пользовательский интерфейс и виртуальную машину для выполнения DOS-приложений. OS/2 с ее развитыми функциями многозадачности и файловой системой HPFS со встроенными средствами многопользовательской защиты оказалась хорошей платформой для построения локальных сетей персональных компьютеров. Сетевые разработки компаний Microsoft и IBM привели к появлению NetBIOS — транспортного протокола и одновременно интерфейса прикладного программирования для локальных сетей, получившего применение практически во всех сетевых операционных системах для персональных компьютеров.
В 80-е годы были приняты основные стандарты на коммуникационные технологии для локальных сетей: в 1980 году — Ethernet, в 1985 — Token Ring, в конце 80-х — FDDI. Это позволило обеспечить совместимость сетевых операционных систем на нижних уровнях, а также стандартизовать интерфейс ОС с драйверами сетевых адаптеров. Для персональных компьютеров применялись не только специально разработанные для них операционные системы, подобные MS-DOS, NetWare и OS/2, но и адаптировались уже существующие ОС. Появление процессоров Intel 80286 и особенно 80386 с поддержкой мультипрограммирования позволило перенести на платформу персональных компьютеров ОС UNIX.
Современные ОС.
В 90-е годы практически все операционные системы, занимающие заметное место на рынке, стали сетевыми. Сетевые функции сегодня встраиваются в ядро ОС, являясь ее неотъемлемой частью. Операционные системы получили средства для работы со всеми основными технологиями локальных и глобальных сетей, а также средства для создания составных сетей. В операционных системах используются средства мультиплексирования нескольких стеков протоколов, за счет которого компьютеры могут поддерживать одновременную сетевую работу с разнородными клиентами и серверами.
Во второй половине 90-х годов все производители операционных систем резко усилили поддержку средств работы с Интернетом. Кроме самого стека TCP/IP в комплект поставки начали включать утилиты, реализующие такие популярные сервисы Интернета, как telnet, ftp, DNS и Web. Влияние Интернета проявилось и в том, что компьютер превратился из чисто вычислительного устройства в средство коммуникаций с развитыми вычислительными возможностями.
Особое внимание в течение всего последнего десятилетия уделялось корпоративным сетевым операционным системам. Корпоративная операционная система отличается способностью хорошо и устойчиво работать в крупных сетях, которые характерны для больших предприятий, имеющих отделения в десятках городов и, возможно, в разных странах. Для корпоративной ОС очень важно наличие средств централизованного администрирования и управления, позволяющих в единой базе данных хранить учетные записи о десятках тысяч пользователей, компьютеров, коммуникационных устройств и модулей программного обеспечения, имеющихся в корпоративной сети. Первой успешной реализацией справочной службы корпоративного масштаба была система StreetTalk компании Banyan. К настоящему времени наибольшее признание получила справочная служба NDS компании Novell, выпущенная впервые в 1993 году для первой корпоративной версии NetWare 4.O.
На современном этапе развития операционных систем на передний план вышли средства обеспечения безопасности. Это связано с возросшей ценностью информации, обрабатываемой компьютерами, а также с повышенным уровнем угроз, существующих при передаче данных по сетям, особенно по публичным, таким как Интернет. Многие операционные системы обладают сегодня развитыми средствами защиты информации, основанными на шифрации данных, аутентификации и авторизации.
Современным операционным системам присуща многоплатформенностъ, то есть способность работать на совершенно различных типах компьютеров. Многие операционные системы имеют специальные версии для поддержки кластерных архитектур, обеспечивающих высокую производительность и отказоустойчивость. Исключением пока является ОС NetWare, все версии которой разработаны для платформы Intel.
В последние годы получила дальнейшее развитие долговременная тенденция повышения удобства работы человека с компьютером. Современная операционная система берет на себя выполнение задачи выбора параметров операционной среды, используя для этой цели различные адаптивные алгоритмы. Например, тайм-ауты в коммуникационных протоколах часто определяются в зависимости от условий работы сети. Распределение оперативной памяти между процессами осуществляется автоматически с помощью механизмов виртуальной памяти в зависимости от активности этих процессов и информации о частоте использования ими той или иной страницы. Мгновенные приоритеты процессов определяются динамически в зависимости от предыстории, включающей, например, время нахождения процесса в очереди, процент использования выделенного кванта времени, интенсивность ввода-вывода и т. п.
Постоянно повышается удобство интерактивной работы с компьютером путем включения в операционную систему развитых графических интерфейсов, использующих наряду с графикой звук и видеоизображение. Это особенно важно для превращения компьютера в терминал новой публичной сети, которой постепенно становится Интернет, так как для массового пользователя, терминал должен быть почти таким же понятным и удобным, как телефонный аппарат.
ОС автономного компьютера.
Операционная система автономного компьютера — комплекс управляющих и обрабатывающих программ, которые, с одной стороны, выступают как интерфейс между устройствами вычислительной системы и прикладными программами, а с другой стороны — предназначены для управления устройствами, управления вычислительными процессами, эффективного распределения вычислительных ресурсов между вычислительными процессами и организации надёжных вычислений. Это определение применимо к большинству современных ОС общего назначения. Основные семейства операционных систем: UNIX, Windows, QNX, MS-DOS, NetWare,, Mac OS.
ОС как виртуальная машина. Операционная система избавляет программистов не только от необходимости напрямую работать с аппаратурой дискового накопителя, предоставляя им простой файловый интерфейс, но и берет на себя все другие рутинные операции, связанные с управлением другими аппаратными устройствами компьютера: физической памятью, таймерами, принтерами. В результате реальная машина, способная выполнять только небольшой набор элементарных действий, определяемых ее системой команд, превращается в виртуальную машину, выполняющую широкий набор гораздо более мощных функций. Таким образом, назначение ОС состоит в предоставлении пользователю/программисту некоторой расширенной виртуальной машины, которую легче программировать и с которой легче работать, чем непосредственно с аппаратурой, составляющей реальный компьютер или реальную сеть.
ОС как система управления ресурсами. Управление ресурсами вычислительной системы с целью наиболее эффективного их использования является назначением операционной системы. Например, мультипрограммная операционная система организует одновременное выполнение сразу нескольких процессов на одном компьютере, поочередно переключая процессор с одного процесса на другой, исключая простои процессора, вызываемые обращениями процессов к вводу-выводу. ОС также отслеживает и разрешает конфликты, возникающие при обращении нескольких процессов к одному и тому же устройству ввода-вывода или к одним и тем же данным.
Функции операционной системы автономного компьютера обычно группируются либо в соответствии с типами локальных ресурсов, которыми управляет ОС, либо в соответствии со специфическими задачами, применимыми ко всем ресурсам. Иногда такие группы функций называют подсистемами. Наиболее важными подсистемами управления ресурсами являются подсистемы управления процессами, памятью, файлами и внешними устройствами, а подсистемами, общими для всех ресурсов, являются подсистемы пользовательского интерфейса, защиты данных и администрирования.
Основные задачи ОС:
• увеличение пропускной способности ЭВМ (за счет организации непрерывной обработки потока задач с автоматическим переходом от одной задачи к другой и эффективного распределения ресурсов ЭВМ по нескольким задачам);
• уменьшение времени реакции системы на запросы пользователей пользователями ответов от ЭВМ;
• упрощение работы разработчиков программных средств и сотрудников обслуживающего персонала ЭВМ (за счет предоставления им значительного количества языков программирования и разнообразных сервисных программ).
Функциональные компоненты операционных систем автономного компьютера:
- программы управления вводом/выводом;
- программы, управляющие файловой системой и планирующие задания для компьютера;
- процессор командного языка, который принимает, анализирует и выполняет команды, адресованные операционной системе.
Таким образом, современные универсальные ОС можно охарактеризовать, прежде всего, как использующие файловые системы (с универсальным механизмом доступа к данным), многопользовательские (с разделением полномочий), многозадачные (с разделением времени).
Сетевые ОС.
Компьютерная сеть — это набор компьютеров, связанных коммуникационной системой и снабженных соответствующим программным обеспечением, позволяющим пользователям сети получать доступ к ресурсам этого набора компьютеров. Компьютерная сеть позволяет пользователю работать со своим компьютером как с автономным и добавляет к этому возможность доступа к информационным и аппаратным ресурсам других компьютеров сети. При организации сетевой работы операционная система играет роль интерфейса, экранирующего от пользователя все детали низкоуровневых программно-аппаратных средств сети. Например, вместо числовых адресов компьютеров сети, таких как МАС-адрес и IP-адрес, операционная система компьютерной сети позволяет оперировать удобными для запоминания символьными именами. В результате в представлении пользователя сеть с ее множеством сложных и запутанных реальных деталей превращается в достаточно понятный набор разделяемых ресурсов.
Сетевая ОС предоставляет пользователю некую виртуальную вычислительную систему, работать с которой гораздо проще, чем с реальной сетевой аппаратурой. В то же время эта виртуальная система не полностью скрывает распределенную природу своего реального прототипа, то есть является виртуальной сетью. Термин «сетевая операционная система» используется в двух значениях: во-первых, как совокупность ОС всех компьютеров сети и, во-вторых, как операционная система отдельного компьютера, способного работать в сети. Исходя из этого определения следует, что такие операционные системы, как, например, Windows NT, NetWare, Solaris, HP-UX, являются сетевыми, поскольку все они обладают средствами, которые позволяют их пользователям работать в сети.
В результате сетевая ОС может рассматриваться как набор операционных систем отдельных компьютеров, составляющих сеть. На разных компьютерах сети могут выполняться одинаковые или разные ОС. Например, на всех компьютерах сети может работать одна и та же ОС UNIX. Более реалистичным вариантом является сеть, в которой работают разные ОС, например часть компьютеров работает под управлением UNIX, часть — под управлением NetWare, а остальные — под управлением Windows NT и Windows 98. Все эти операционные системы функционируют независимо друг от друга в том смысле, что каждая из них принимает независимые решения о создании и завершении своих собственных процессов и управлении локальными ресурсами. Но в любом случае операционные системы компьютеров, работающих в сети, должны включать взаимно согласованный набор коммуникационных протоколов для организации взаимодействия процессов, выполняющихся на разных компьютерах сети.
Если операционная система отдельного компьютера позволяет ему работать в сети, то есть предоставлять свои ресурсы в общее пользование и/или потреблять ресурсы других компьютеров сети, то такая операционная система отдельного компьютера также называется сетевой ОС.
Основные функциональные компоненты сетевой ОС:
• средства управления локальными ресурсами компьютера реализуют все функции ОС автономного компьютера (распределение оперативной памяти между процессами, планирование и диспетчеризацию процессов, управление процессорами в мультипроцессорных машинах, управление внешней памятью, интерфейс с пользователем и т. д.);
• сетевые средства, в свою очередь, можно разделить на три компонента:
• средства предоставления локальных ресурсов и услуг в общее пользование — серверная часть ОС;
• средства запроса доступа к удаленным ресурсам и услугам — клиентская часть ОС;
• транспортные средства ОС, которые совместно с коммуникационной системой обеспечивают передачу сообщений между компьютерами сети.
Пользователи сетевой ОС обычно должны быть в курсе того, где хранятся их файлы, и должны использовать явные команды передачи файлов для перемещения файлов с одной машины на другую.
Работая в среде сетевой ОС, пользователь, хотя и может запустить задание на любой машине компьютерной сети, всегда знает, на какой машине выполняется его задание.
Серверные ОС.
Назначение серверной операционной системы - это управление приложениями, обслуживающими всех пользователей корпоративной сети, а нередко и внешних пользователей. К таким приложениям относятся современные системы управления базами данных, средства управления сетями и анализа событий в сети, службы каталогов, средства обмена сообщениями и групповой работы, Web-серверы, почтовые серверы, корпоративные брандмауэры, серверы приложений самого разнообразного назначения, серверные части бизнес-приложений. Требования к производительности и надежности указанных операционных систем очень высоки; нередко сюда входят и поддержка кластеров (набора ряда однотипных компьютеров, выполняющих одну и ту же задачу и делящих между собой нагрузку), и возможности дублирования и резервирования, и переконфигурации программного и аппаратного обеспечения без перезагрузки операционной системы. Выбор серверной операционной системы и аппаратной платформы для нее в первую очередь определяется тем, какие приложения под ее управлением должны выполняться (как минимум, выбранные приложения должны существовать в версии для данной платформы) и какие требования предъявляются к ее производительности, надежности и доступности.
Основные серверные ОС:
1. Windows (Microsoft). Серверные версии операционной системы Windows сегодня применяются довольно широко - благодаря удобству администрирования и невысокой совокупной стоимости владения. Windows NT, Windows 2000, Windows Server 2003.
2. UNIX. Общими для всех версий UNIX особенностями являются многопользовательский режим со средствами защиты данных от несанкционированного доступа, реализация мультипрограммной обработки в режиме разделения времени, использование механизмов виртуальной памяти и свопинга, унификация операций ввода-вывода, иерархическая файловая система, разнообразные средства взаимодействия процессов, в том числе межсетевого. Solaris, HP-UX, AIX.
3. Linux и FreeBSD. Одним из серьезных преимуществ Linux является низкая стоимость ее приобретения (хотя сама операционная система является некоммерческим продуктом, сертифицированные дистрибутивы Linux - обычно продукты коммерческие). Кроме того, ряд компаний, в частности IBM, вкладывают значительные средства в развитие Linux как серверной платформы, одновременно стремясь реализовать совместимость с Linux в своих коммерческих версиях UNIX в расчете на возможный переход с Linux на указанные операционные системы. FreeBSD нередко используется Интернет-провайдерами, а также в качестве операционной системы для корпоративных брандмауэров.
4. NetWare (Novell). Основными особенностями последней версии данной операционной системы, Novell NetWare 6.5, являются возможность создания географически распределенных кластеров, наличие средств поддержки мобильных и удаленных пользователей, инструментов управления удаленными сетевыми ресурсами, а также средств синхронизации информации о пользователях и приведения в соответствие между собой каталогов в смешанных средах.
5. Mac OS X (Apple). В целом Mac OS X представляется многообещающей серверной операционной системой, и для нее уже начали выпускаться серверные СУБД и иное инфраструктурное программное обеспечение, хотя корпоративные пользователи пока относятся к ней достаточно осторожно.
Мультипрограммирование.
Мультипрограммирование, или многозадачность, — это способ организации вычислительного процесса, при котором на одном процессоре попеременно выполняются сразу несколько программ. Эти программы совместно используют не только процессор, но и другие ресурсы компьютера: оперативную и внешнюю память, устройства ввода-вывода, данные. Мультипрограммирование призвано повысить эффективность использования вычислительной системы, однако эффективность может пониматься по-разному. Наиболее характерными критериями эффективности вычислительных систем являются:
• пропускная способность — количество задач, выполняемых вычислительной системой в единицу времени;
• удобство работы пользователей, заключающееся, в том, что они имеют возможность интерактивно работать одновременно с несколькими приложениями на одной машине;
• реактивность системы — способность системы выдерживать заранее заданные (возможно, очень короткие) интервалы времени между запуском программы и получением результата.
В зависимости от выбранного критерия эффективности ОС делятся на системы пакетной обработки, системы разделения времени, и системы реального времени. Каждый тип ОС имеет специфические внутренние механизмы и особые области применения.
При использовании мультипрограммирования для повышения пропускной способностикомпьютера главной целью является минимизация простоев всех устройств компьютера, и прежде всего центрального процессора. Такие простои могут возникать из-за приостановки задачи по ее внутренним причинам, связанным, например, с ожиданием ввода данных для обработки. При возникновении такого рода блокировки выполняемой задачи естественным решением, ведущим к повышению эффективности использования процессора, является переключение процессора на выполнение другой задачи, у которой есть данные для обработки. Такая концепция мультипрограммирования положена в основу так называемых пакетных систем.
Еще одна разновидность мультипрограммирования используется в системах реального времени, предназначенных для управления от компьютера различными техническими объектами или технологическими процессами. Во всех этих случаях существует предельно допустимое время, в течение которого должна быть выполнена та или иная управляющая объектом программа. Таким образом, критерием эффективности здесь является способность выдерживать заранее заданные интервалы времени между запуском программы и получением результата (управляющего воздействия). В системах реального времени мультипрограммная смесь представляет собой фиксированный набор заранее разработанных программ, а выбор программы на выполнение осуществляется по прерываниям (исходя из текущего состояния объекта) или в соответствии с расписанием плановых работ.
Повышение удобства и эффективности работы пользователя является целью другого способа мультипрограммирования - в режиме разделения времени. В системах разделения времени пользователям (или одному пользователю) предоставляется возможность интерактивной работы сразу с несколькими приложениями. Для этого каждое приложение должно регулярно получать возможность «общения» с пользователем. В системах разделения времени эта проблема решается за счет того, что ОС принудительно периодически приостанавливает приложения, не дожидаясь, когда они добровольно освободят процессор. Всем приложениям попеременно выделяется квант процессорного времени, таким образом, пользователи, запустившие программы на выполнение, получают возможность поддерживать с ними диалог. Мультипрограммное выполнение интерактивных приложений повышает и пропускную способность компьютера. Аппаратура загружается лучше, поскольку в то время, пока одно приложение ждет сообщения пользователя, другие приложения могут обрабатываться процессором.
Планирование процессов и потоков.
Чтобы поддерживать мультипрограммирование, ОС должна определить и оформить для себя те внутренние единицы работы, между которыми будет разделяться процессор и другие ресурсы компьютера. В настоящее время в большинстве операционных систем определены два типа единиц работы. Более крупная единица работы, обычно носящая название процесса, или задачи, требует для своего выполнения нескольких более мелких работ, для обозначения которых используют термины «поток». В операционных системах, где существуют и процессы, и потоки, процесс рассматривается операционной системой как заявка на потребление всех видов ресурсов, кроме одного — процессорного времени. Этот последний важнейший ресурс распределяется операционной системой между другими единицами работы — потоками, которые и получили свое название благодаря тому, что они представляют собой последовательности (потоки выполнения) команд.
Одной из основных подсистем мультипрограммной ОС, непосредственно влияющей на функционирование вычислительной машины, является подсистема управления процессами и потоками, которая занимается их созданием и уничтожением, поддерживает взаимодействие между ними, а также распределяет процессорное время между несколькими одновременно существующими в системе процессами и потоками.
Подсистема управления процессами и потоками ответственна за обеспечение процессов необходимыми ресурсами. ОС поддерживает в памяти специальные информационные структуры, в которые записывает, какие ресурсы выделены каждому процессу. Она может назначить процессу ресурсы в единоличное пользование или в совместное пользование с другими процессами. Некоторые из ресурсов выделяются процессу при его создании, а некоторые — динамически по запросам во время выполнения. Ресурсы могут быть приписаны процессу на все время его жизни или только на определенный период. При выполнении этих функций подсистема управления процессами взаимодействует с другими подсистемами ОС, ответственными за управление ресурсами, такими как подсистема управления памятью, подсистема ввода-вывода, файловая система. Синхронизация потоков является одной из важных функций подсистемы управления процессами и потоками.
11. Алгоритмы планирования процессов.
Планирование - обеспечение поочередного доступа процессов к одному процессору. Планировщик - отвечающая за это часть операционной системы. Алгоритм планирования - используемый алгоритм для планирования. Ситуации, когда необходимо планирование:
• когда создается процесс
• когда процесс завершает работу
• когда процесс блокируется на операции ввода/вывода, семафоре, и т.д.
• при прерывании ввода/вывода.
Алгоритм планирования без переключений (неприоритетный) - не требует прерывание по аппаратному таймеру, процесс останавливается только когда блокируется или завершает работу.
Алгоритм планирования с переключениями (приоритетный) - требует прерывание по аппаратному таймеру, процесс работает только отведенный период времени, после этого он приостанавливается по таймеру, чтобы передать управление планировщику. Необходимость алгоритма планирования зависит от задач, для которых будет использоваться операционная система.
Основные три системы:
• системы пакетной обработки - могут использовать неприоритетный и приоритетный алгоритм
• интерактивные системы - могут использовать только приоритетный алгоритм
• системы реального времени - могут использовать неприоритетный и приоритетный алгоритм
Основные понятия ОСРВ.
Операционная система реального времени - программа, распределяющая вычислительные ресурсы таким образом, чтобы обеспечить выполнение требований реального времени для приложения, использующего ОСРВ.
Система (приложение) реального времени - программная система, в которой корректность работы зависит не только от результатов вычислений, но также от времени получения этих результатов. Система должна завершить обработку события (выработать отклик) не позднее заранее определенного момента времени. Система управляет обработкой большого количества разных событий. Реальное время определяется соотношением срока исполнения и временем отклика. Существует несколько типов реального времени:
• жесткое реальное время требует, чтобы время отклика никогда не превышало срок исполнения. Примеры: система управления двигателем, система торможения, подушка безопасности.
• комбинированное реальное время комбинирует два срока выполнения - короткого «с допуском» и более длинного «жесткого». Примеры: мультимедиа приложения, высокоскоростные сети передачи данных.
• реальное время с допусками допускает флуктуации времени отклика при условии, что среднее время отклика равно сроку исполнения. Примеры: экранный редактор, сеть передачи данных, сервер базы данных.
Базовые объекты ОСРВ:
• Задачи - единица обработки, выполняющаяся конкурентно с другими задачами. Задачи являются основным средством обработки внутренних событий. Задача имеет некоторое значение приоритета, определяющее ее относительные претензии на захват процессора. Эти претензии удовлетворяются ОС по определенному алгоритму. Вместо приоритета может использоваться значение срока исполнения.
• Обработчики прерываний - единица обработки, инициированная аппаратным прерыванием асинхронно по отношению к выполнению задач и самой ОС. Обработчики прерываний являют