Методы построения алгоритмов.
Составление алгоритмов решения задач - это работа творческая. Нет универсального способа, позволяющего без особого труда составлять любые алгоритмы.
В большинстве случаев та или иная задача может быть решена несколькими численными методами. Выбор конкретного численного метода решения задачи обычно производится по критериям:
· обеспечение оптимального времени решения задачи;
· обеспечение оптимального использования имеющихся ресурсов (памяти);
· обеспечение требуемой точности вычислений;
· минимальные стоимостные затраты;
· возможность использования стандартных подпрограмм.
При дальнейшей постановке задачи на ПК отыскивается наиболее рациональный способ решения задачи.
Структурное программирование - одна из популярных методик. Фундаментом структурного программирования является теорема о структурировании. Эта теорема устанавливает, что как бы сложна ни была задача, блок-схема соответствующей программы (читай - "соответствующего алгоритма") всегда может быть представлена с использованием весьма ограниченного числа элементарных управляющих структур (последовательность, ветвление, цикл).
Главная идея доказательства этой теоремы состоит в преобразовании каждой части алгоритма в одну из трех основных структур или их комбинацию так, чтобы неструктурированная часть алгоритма уменьшилась. После достаточного числа таких преобразований оставшаяся неструктурированной часть либо исчезнет, либо станет ненужной. Доказывается, что в результате получится алгоритм, эквивалентный исходному и использующий лишь упомянутые управляющие структуры.
Цель структурного программирования - выбор структуры программы путем расчленения исходной задачи на подзадачи. Программы должны иметь простую структуру. Сложные, запутанные программы, как правило, являются неработоспособными, а их тестирование требует больших затрат.
Разработка алгоритма, являясь четким логичным процессом, упрощается на каждом уровне шаг за шагом. Затем в процессе задействуется следующий метод алгоритмизации - метод пошагового уточнения (совершенствования). Сначала задача рассматривается в целом, выделяются наиболее крупные ее части. Алгоритм, указывающий порядок выполнения этих частей, описывается в структурированной форме, не вдаваясь в мелкие детали. Затем от общей структуры переходят к описанию отдельных частей. Таким образом, разработка алгоритма состоит из последовательности шагов в направлении уточнения алгоритма.
Дальнейшим развитием, расширением структурного программирования является модульное программирование, идея которого состоит в том, что алгоритм может быть представлен в виде системы, совокупности отдельных модулей. Каждый модуль рассматривается как самостоятельная, относительно независимая программа, которая может содержать набор данных и функций, доступных только из этого модуля.
Модульное программирование позволяет значительно ускорить процесс за счёт привлечения к работе нескольких специалистов сразу, доверив каждому разработку отдельного модуля. Кроме того, модульное программирование предполагает возможность использования заранее разработанных стандартных программ (т.н. библиотек стандартных подпрограмм).
На этапе проектирования алгоритма решения сложной задачи, состоящей из нескольких подзадач, используют два подхода: нисходящий и восходящий.
При нисходящем проектировании вначале проектируются функции управляющей программы - драйвера. Затем более подробно представляют каждую подзадачу и разрабатывают другие модули. При нисходящем проектировании на каждом шаге функционирование модуля описывается с помощью ссылок на последующие, более подробные шаги.
При восходящем проектировании вначале проектируют программы низшего уровня, иногда в виде самостоятельных подпрограмм. Затем на каждом шаге разрабатываются модули более высокого уровня.
Существует также несколько общих алгоритмических методов решения очень сложных задач. Более подробно ознакомиться с некоторыми из них можно в (методы частных целей, подъема и отрабатывания назад, метод ветвей и границ и др.).