Адресация в компьютерных сетях

Адресация в компьютерных сетях      
 
Наибольшее распространение получили три схемы адресации узлов. Аппаратные (hardware) адреса. Эти адреса предназначены для сети небольшого или среднего размера, поэтому они не имеют иерархической структуры. Типичным представителем адреса такого типа является адрес сетевого адаптера локальной сети. Такой адрес обычно используется только аппаратурой, поэтому его стараются сделать по возможности компактным и записывают в виде двоичного или шестнадцатеричного значения, например 0081005е24а8. При задании аппаратных адресов обычно не требуется выполнение ручной работы, так как они либо встраиваются в аппаратуру компанией-изготовителем, либо генерируются автоматически при каждом новом запуске оборудования, причем уникальность адреса в пределах сети обеспечивает оборудование. Помимо отсутствия иерархии, использование аппаратных адресов связано еще с одним недостатком - при замене аппаратуры, например, сетевого адаптера, изменяется и адрес компьютера. Более того, при установке нескольких сетевых адаптеров у компьютера появляется несколько адресов, что не очень удобно для пользователей сети. Символьные адреса или имена. Эти адреса предназначены для запоминания людьми и поэтому обычно несут смысловую нагрузку. Символьные адреса легко использовать как в небольших, так и крупных сетях. Для работы в больших сетях символьное имя может иметь сложную иерархическую структуру, например ftp-archl.ucl.ac.uk. Этот адрес говорит о том, что данный компьютер поддерживает ftp-архив в сети о дного из колледжей Лондонского университета (University College London - ucl) и эта сеть относится к академической ветви (ас) Internet Великобритании (United Kingdom - uk). При работе в пределах сети Лондонского университета такое длинное символьное имя явно избыточно и вместо него удобно пользоваться кратким символьным именем, на роль которого хорошо подходит самая младшая составляющего полного имени, то есть имя ftp-archl. Числовые составные адреса. Символьные имена удобны для людей, но из-за переменного формата и потенциально большой длины их передача по сети не очень экономична. Поэтому во многих случаях для работы в больших сетях в качестве адресов узлов используют числовые составные адреса фиксированного и компактного форматов. Типичным представителями адресов этого типа являются IP- и IPX-адреса. В них поддерживается двухуровневая иерархия, адрес делится на старшую часть - номер сети и младшую - номер узла. Такое деление позволяет передавать сообщения между сетями только на основании номера сети, а номер узла используется только после доставки сообщения в нужную сеть; точно так же, как название улицы используется почтальоном только после того, как письмо доставлено в нужный город. В последнее время, чтобы сделать маршрутизацию в крупных сетях более эффективной, предлагаются более сложные варианты числовой адресации, в соответствии с которыми адрес имеет три и более составляющих. Такой подход, в частности, реализован в новой версии протокола IPv6, предназначенного для работы в сети Internet. В современных сетях для адресации узлов применяются, как правило, одновременно все три приведенные выше схемы. Пользователи адресуют компьютеры символьными именами, которые автоматически заменяются в сообщениях, передаваемых по сети, на числовые номера. С помощью этих числовых номеров сообщения передаются из одной сети в другую, а после доставки сообщения в сеть назначения вместо числового номера используется аппаратный адрес компьютера. Сегодня такая схема характерна даже для небольших автономных сетей, где, казалось бы, она явно избыточна - это делается для того, чтобы при включении этой сети в большую сеть не нужно было менять состав операционной системы.


Сетевые ОС

Сетевая операционная система — операционная система со встроенными возможностями для работы в компьютерных сетях. К таким возможностям можно отнести:

· поддержку сетевого оборудования

· поддержку сетевых протоколов

· поддержку протоколов маршрутизации

· поддержку фильтрации сетевого трафика

· поддержку доступа к удалённым ресурсам, таким как принтеры, диски и т. п. по сети

· поддержку сетевых протоколов авторизации

· наличие в системе сетевых служб позволяющей удалённым пользователям использовать ресурсы компьютера

Примеры сетевых операционных систем:

· Novell NetWare

· LANtastic

· Microsoft Windows (95, NT, XP, Vista, Seven)

· Различные UNIX системы, такие как Solaris, FreeBSD

· Различные GNU/Linux системы

· IOS

· ZyNOS компании ZyXEL

Основное назначение

Главными задачами являются разделение ресурсов сети (например, дисковые пространства) и администрирование сети. С помощью сетевых функций системный администратор определяет разделяемые ресурсы, задаёт пароли, определяет права доступа для каждого пользователя или группы пользователей. Отсюда деление:

· сетевые ОС для серверов;

· сетевые ОС для пользователей.

Существуют специальные сетевые ОС, которым приданы функции обычных систем (Пр.: Windows NT) и обычные ОС (Пр.: Windows XP), которым приданы сетевые функции. Сегодня практически все современные ОС имеют встроенные сетевые функции.

Сетевая операционная система (англ. Network operating system) – это операционная система, которая обеспечивает обработку, хранение и передачу данных в информационной сети.

Сетевая операционная система составляет основу любой вычислительной сети. Каждый компьютер в сети автономен, поэтому под сетевой операционной системой в широком смысле понимается совокупность операционных систем отдельных компьютеров, взаимодействующих с целью обмена сообщениями и разделения ресурсов по единым правилам - протоколам. Эти протоколы обеспечивают основные функции сети: адресацию объектов, функционирование служб, обеспечение безопасности данных, управление сетью. В узком смысле сетевая ОС - это операционная система отдельного компьютера, обеспечивающая ему возможность работать в сети.

В зависимости от того, как распределены функции между компьютерами сети, сетевые операционные системы, а следовательно, и сети делятся на два класса: одноранговые и двухранговые, которые чаще называют сетями с выделенными серверами.

Если компьютер предоставляет свои ресурсы другим пользователям сети, то он играет роль сервера. При этом компьютер, обращающийся к ресурсам другой машины, является клиентом. Компьютер, работающий в сети, может выполнять функции либо клиента, либо сервера, либо совмещать обе функции.

Если выполнение серверных функций является основным назначением компьютера, то такой компьютер называется выделенным сервером. В зависимости от того, какой ресурс сервера является разделяемым, он называется файл-сервером, факс-сервером, принт-сервером, сервером приложений..

На выделенных серверах желательно устанавливать ОС, специально оптимизированные для выполнения определенных серверных функций. Поэтому в подобных сетях с чаще всего используются сетевые операционные системы, в состав которых входит нескольких вариантов ОС, отличающихся возможностями серверных частей.

В одноранговых сетях все компьютеры равны в правах доступа к ресурсам друг друга. Каждый пользователь может по своему желанию объявить какой-либо ресурс своего компьютера разделяемым, после чего другие пользователи могут его использовать. В таких сетях на всех компьютерах устанавливается одна и та же ОС.

Операционная система UNIX - многопользовательская, многозадачная операционная система, способная функционировать на различных аппаратных платформах. В микроядро ОС UNIX встроен модуль, выполняющий протокол управления передачей/межсетевой протокол (протокол TCP/IP).

Операционная система Linux - сетевая операционная система, ядро которой разработано на базе операционной системы Unix. Linux распространяется с открытыми исходными кодами и применяется для создания серверов в вычислительных сетях и в Интернете.

Сетевая операционная система NetWare - разработанная корпорацией Novell сетевая операционная система, которая использует одноранговую архитектуру или архитектуру клиент-сервер.

Сетевая операционная система Windows NT - разработанная корпорацией Microsoft сетевая, многозадачная операционная система, поддерживающая архитектуру клиент-сервер. ОС Windows NT существует в виде двух продуктов:

· Windows NT Server, выполняющий функции сервера;

· Windows NT Workstation, реализующий задачи клиента.

Защита информации

ЗАЩИТА ИНФОРМАЦИИ — система мер, направленных на достижение безопасного защищенного документооборота с целью сохранения государственных и коммерческих секретов. Для достижения результата реализуются режимные требования, применяются сложные, как правило электронные, устройства; для защиты информации в компьютерах и сетях используются программно-технические решения, в том числе с применением криптографии.

«Информационная безопасность» рассматривается в значениях:

· состояние (качество) определённого объекта (в качестве объекта может выступать информация, данные, ресурсы автоматизированной системы, автоматизированная система, информационная система предприятия, общества, государства и т. п.)[1];

· деятельность, направленная на обеспечение защищенного состояния объекта (в этом значении чаще используется термин «защита информации»)

В то время как информационная безопасность — это состояние защищённости информационной среды, защита информации представляет собой деятельность по предотвращению утечки защищаемой информации, несанкционированных и непреднамеренных воздействий на защищаемую информацию, то есть процесс, направленный на достижение этого состояния.

Информационная безопасность организации — целенаправленная деятельность ее органов и должностных лиц с использованием разрешенных сил и средств по достижению состояния защищённости информационной среды организации, обеспечивающее её нормальное функционирование и динамичное развитие.

Кортеж защиты информации — это последовательность действий для достижения определённой цели.

Информационная безопасность государства[3] — состояние сохранности информационных ресурсов государства и защищенности законных прав личности и общества в информационной сфере.

В современном социуме информационная сфера имеет две составляющие[4]: информационно-техническую (искусственно созданный человеком мир техники, технологий и т. п.) и информационно-психологическую (естественный мир живой природы, включающий и самого человека). Соответственно, в общем случае информационную безопасность общества (государства) можно представить двумя составными частями: информационно-технической безопасностью и информационно-психологической (психофизической) безопасностью.

Безопасность информации (данных)[1] — состояние защищенности информации (данных), при котором обеспечены её (их) конфиденциальность, доступность и целостность.

Информационная безопасность[2] — защита конфиденциальности, целостности и доступности информации.

· Конфиденциальность: свойство информационных ресурсов, в том числе информации, связанное с тем, что они не станут доступными и не будут раскрыты для неуполномоченных лиц.

· Целостность: неизменность информации в процессе ее передачи или хранения.

· Доступность: свойство информационных ресурсов, в том числе информации, определяющее возможность их получения и использования по требованию уполномоченных лиц.

Информационная безопасность (англ. information security)[5] — все аспекты, связанные с определением, достижением и поддержанием конфиденциальности, целостности, доступности, неотказуемости, подотчетности, аутентичности и достоверности информации или средств её обработки.

Безопасность информации (данных) (англ. information (data) security)[6] — состояние защищенности информации (данных), при котором обеспечиваются её (их) конфиденциальность, доступность и целостность.

Безопасность информации (данных) определяется отсутствием недопустимого риска, связанного с утечкой информации по техническим каналам, несанкционированными и непреднамеренными воздействиями на данные и (или) на другие ресурсы автоматизированной информационной системы, используемые в автоматизированной системе.

Безопасность информации (при применении информационных технологий) (англ. IT security)[6] — состояние защищенности информации (данных), обеспечивающее безопасность информации, для обработки которой она применяется, и информационную безопасность автоматизированной информационной системы, в которой она реализована.

Безопасность автоматизированной информационной системы[6] — состояние защищенности автоматизированной системы, при котором обеспечиваются конфиденциальность, доступность, целостность, подотчетность и подлинность её ресурсов.

В качестве стандартной модели безопасности часто приводят модель из трёх категорий:

· конфиденциальность (англ. confidentiality)[6] — состояние информации, при котором доступ к ней осуществляют только субъекты, имеющие на нее право;

· целостность (англ. integrity)[7] — избежание несанкционированной модификации информации;

· доступность (англ. availability)[8] — избежание временного или постоянного сокрытия информации от пользователей, получивших права доступа.

Выделяют и другие не всегда обязательные категории модели безопасности:

· неотказуемость или апеллируемость (англ. non-repudiation)[5] — способность удостоверять имевшее место действие или событие так, что эти события или действия не могли быть позже отвергнуты;

· подотчётность (англ. accountability)[9] — обеспечение идентификации субъекта доступа и регистрации его действий;

· достоверность (англ. reliability)[5] — свойство соответствия предусмотренному поведению или результату;

· аутентичность или подлинность (англ. authenticity)[5] — свойство, гарантирующее, что субъект или ресурс идентичны заявленным.

Целью реализации информационной безопасности какого-либо объекта является построение Системы обеспечения информационной безопасности данного объекта (СОИБ). Для построения и эффективной эксплуатации СОИБ необходимо[2]:

1) выявить требования защиты информации, специфические для данного объекта защиты;

2) учесть требования национального и международного Законодательства;

3) использовать наработанные практики (стандарты, методологии) построения подобных СОИБ;

4) определить подразделения, ответственные за реализацию и поддержку СОИБ;

5) распределить между подразделениями области ответственности в осуществлении требований СОИБ;

6) на базе управления рисками информационной безопасности определить общие положения, технические и организационные требования, составляющие Политику информационной безопасности объекта защиты;

7) реализовать требования Политики информационной безопасности, внедрив соответствующие программно-технические способы и средства защиты информации;

8) реализовать Систему менеджмента (управления) информационной безопасности (СМИБ);

9) используя СМИБ организовать регулярный контроль эффективности СОИБ и при необходимости пересмотр и корректировку СОИБ и СМИБ.

· Защита Информации: Деятельность, направленная на предотвращение утечки защищаемой информации, несанкционированных и непреднамеренных воздействий на защищаемую информацию.

www.termika.ru/dou/docs/detail.php

· система мер, направленных на достижение безопасного защищенного документооборота с целью сохранения государственных и коммерческих секретов. ...

www.asros.ru/ru/financial/fin9/

· включает в себя комплекс мероприятий, направленных на обеспечение информационной безопасности. На практике под этим понимается поддержание целостности, доступности и, если нужно, конфиденциальности информации и ресурсов, используемых для ввода, хранения, обработки и передачи данных. [11]

domarev.com.ua/book-02/gloss.htm

· (Защита данных) - Предотвращение доступа к определенным объектам информации лицам, не имеющим на то соответствующего разрешения.

www.asc-development.ru/dictionary-rus-z.html

Дисциплина «Основы алгоритмизации и программирования»

Наши рекомендации