Кодирование звуковой информации
Размер цифрового моноаудиофайла ( A) измеряется по формуле:
A=D*T*I/8,
где D –частота дискретизации (Гц),
T – время звучания или записи звука (сек),
I- разрядность регистра (разрешение).
Размер цифрового стереоаудиофайла ( A) измеряется по формуле: A=2*D*T*I/8, сигнал записан для двух колонок, так как раздельно кодируются левый и правый каналы звучания
Характеристики качества звука:
1. "Глубина" кодирования звука - количество бит на один звуковой сигнал
Современные звуковые карты обеспечивают 16-битную "глубину" кодирования звука. Количество уровней (градаций амплитуды) можно рассчитать по формуле
N = 2I = 216 = 65 536 уровней сигнала
(градаций амплитуды)
2. Частота дискретизации – это количество измерений уровней сигнала за 1 секунду
Звук - это физическое природное явление, распространяющееся посредством колебаний воздуха и, следовательно, можно сказать, что мы имеем дело только с волновыми характеристиками.
ОБРАБОТКА ЗВУКА
1. Амплитудные преобразования.
Выполняются над амплитудой сигнала и приводят к ее усилению/ослаблению или изменению по какому-либо закону на определенных участках сигнала.
2. Частотные преобразования.
Выполняются над частотными составляющими звука: сигнал представляется в виде спектра частот через определенные промежутки времени, производится обработка необходимых частотных составляющих, например, фильтрация, и обратное «сворачивание» сигнала из спектра в волну.
3. Фазовые преобразования.
Сдвиг фазы сигнала тем или иным способом; например, такие преобразования стерео сигнала, позволяют реализовать эффект вращения или «объёмности» звука.
4. Временные преобразования.
Реализуются путем наложения, растягивания/сжатия сигналов; позволяют создать, например, эффекты эха или хора, а также повлиять на пространственные характеристики звука.
КРАТКАЯ ИСТОРИЯ
РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ.
Вся история развития человеческого общества связана с накоплением и обменом информацией (наскальная живопись, письменность, библиотеки, почта, телефон, радио, счеты и механические арифмометры и др.). Коренной перелом в области технологии обработки информации начался после второй мировой войны. В вычислительных машинах первого поколения основными элементами были электронные лампы. Эти машины занимали громадные залы, весили сотни тонн и расходовали сотни киловатт электроэнергии. Их быстродействие и надежность были низкими, а стоимость достигала 500-700 тысяч долларов. Появление более мощных и дешевых ЭВМ второго поколения стало возможным благодаря изобретению в 1948 году полупроводниковых устройств- транзисторов. Главный недостаток машин первого и второго поколений заключался в том, что они собирались из большого числа компонент, соединяемых между собой. Точки соединения (пайки) являются самыми ненадежными местами в электронной технике, поэтому эти ЭВМ часто выходили из строя. В ЭВМ третьего поколения (с середины 60-х годов ХХ века) стали использоваться интегральные микросхемы (чипы)- устройства, содержащие в себе тысячи транзисторов и других элементов, но изготовляемые как единое целое, без сварных или паяных соединений этих элементов между собой. Это привело не только к резкому увеличению надежности ЭВМ, но и к сниижению размеров, энергопотребления и стоимости (до 50 тысяч долларов). История ЭВМ четвертого поколения началась в 1970 году, когда ранее никому не известная америкнская фирма INTEL создала большую интегральную схему (БИС), содержащую в себе практически всю основную электронику компьютера. Цена одной такой схемы (микропроцессора) составляла всего несколько десятков долларов, что в итоге и привело к снижению цен на ЭВМ до уровня доступных широкому кругу пользователей. СОВРЕМЕННЫЕ ЭВМ - ЭТО ЭВМ ЧЕТВЕРТОГО ПОКОЛЕНИЯ, В КОТОРЫХ ИСПОЛЬЗУЮТСЯ БОЛЬШИЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ. 90-ые годы ХХ-го века ознаменовались бурным развитием компьютерных сетей, охватывающих весь мир. Именно к началу 90-ых количество подключенных к ним компьютеров достигло такого большого значения, что объем ресурсов доступных пользователям сетей привел к переходу ЭВМ в новое качество. Компьютеры стали инструментом для принципиально нового способа общения людей через сети, обеспечивающего практически неограниченный доступ к информации, находящейся на огромном множестве ЭВМ во всем мире - "глобальной информационной среде обитания". 3. ОСНОВНЫЕ ФУНКЦИОНАЛЬНЫЕ ЧАСТИ ЭВМ. ОСНОВНЫЕ ПРИНЦИПЫ УСТРОЙСТВА ЭВМ БЫЛИ ПРЕДЛОЖЕНЫ ДЖОНОМ ФОН НЕЙМАНОМ - выдающимся американским математиком венгерского происхождения в 1945 году. В соответствии с ними в любой ЭВМ должны иметься четыре основных функциональных части. Взаимодействие между ними можно упрощенно изобразить в виде схемы: На схеме двойные стрелки соответствуют движению данных (информация в ЭВМ называется данными). Человек вводит данные в компьютер через устройства ввода- вывода, эти данные могут храниться в устройствах хранения информации и обрабатываться в устройствах обработки информации. Полученные результаты также могут запоминаться в устройствах хранения информации и выдаваться человеку с помощью устройств ввода-вывода. Управляющие устройства управляют всем этим процессом, что изображено на схеме одинарными стрелками. Так, в общих чертах, работают все ЭВМ, начиная с простейших калькуляторов и кончая суперкомпьютерами.
4.УСТРОЙСТВА ХРАНЕНИЯ ИНФОРМАЦИИ.
Различают устройства хранения информации, реализованные в виде электронных схем, и накопители информации, при помощи которых данные записываются на какой-либо носитель, например магнитный или оптический (ранее использовались даже бумажные носители- перфокарты и перфоленты). Устройства, представляющие собой электронные схемы, отличаются небольшим временем доступа к данным, но не позволяют хранить большие объемы информации. Накопители информации наоборот дают возможность хранить большие объемы информации, но время ее записи и считывания там велико. Поэтому эффективная работа на компьютере возможна только при совместном использовании накопителей информации и устройств хранения, реализованных в виде электронных схем. ОПЕРАТИВНАЯ ПАМЯТЬ ПРЕДНАЗНАЧЕНА ДЛЯ ХРАНЕНИЯ ИСПОЛНЯЕМЫХ В ДАННЫЙ МОМЕНТ ПРОГРАММ И НЕОБХОДИМЫХ ДЛЯ ЭТОГО ДАННЫХ. Иными словами, в ОЗУ хранится информация, с которой ведется работа в данный момент времени. ПОСТОЯННОЕ ЗАПОМИНАЮЩЕЕ УСТРОЙСТВО ПРЕДНАЗНАЧЕНО ДЛЯ ХРАНЕНИЯ НЕИЗМЕНЯЕМОЙ ИНФОРМАЦИИ. В компьютере постоянно должна храниться информация, которая нужна при каждом его включении. Например, в ПЗУ записываются команды, которые компьютер должен выполнить сразу после включения питания для начала работы. СОДЕРЖИМОЕ ОПЕРАТИВНОЙ ПАМЯТИ ПРОПАДАЕТ ПРИ ВЫКЛЮЧЕНИИ ПИТАНИЯ, СОДЕРЖИМОЕ ПЗУ ПРИ ВЫКЛЮЧЕНИИ ПИТАНИЯ СОХРАНЯЕТСЯ. Поэтому ПЗУ иногда называют энергонезависимой памятью. ГИБКИЕ МАГНИТНЫЕ ДИСКИ (ДИСКЕТЫ) ПРЕДНАЗНАЧЕНЫ, КАК ПРАВИЛО, ДЛЯ ПЕРЕНОСКИ ИНФОРМАЦИИ С ОДНОЙ ЭВМ НА ДРУГУЮ. ЖЕСТКИЕ МАГНИТНЫЕ ДИСКИ - ЭТО, КАК ПРАВИЛО, НЕСЪЕМНЫЕ УСТРОЙСТВА, ПРЕДНАЗНАЧЕННЫЕ ДЛЯ ХРАНЕНИЯ БОЛЬШИХ ОБЪЕМОВ ИНФОРМАЦИИ. МАГНИТНЫЕ ЛЕНТЫ, ОПТИЧЕСКИЕ И МАГНИТООПТИЧЕСКИЕ ДИСКИ ИСПОЛЬЗУЮТСЯ И ДЛЯ ТОГО И ДЛЯ ДРУГОГО. Принцип записи информации на магнитные ленты и диски аналогичен принципу записи звука в магнитофоне. В магнитооптических дисках информация также хранится на магнитном носителе, но чтение и запись осуществляются лучом лазера, что значительно повышает сохранность информации. Информация на лазерных дисках представляет собой участки в различной степени отражающие лазерный луч. УСТРОЙСТВО ДЛЯ РАБОТЫ С ДИСКЕТАМИ НАЗЫВАЕТСЯ ДИСКОВОДОМ, ДЛЯ РАБОТЫ С ЛАЗЕРНЫМИ ДИСКАМИ - CD-ROM (произносится "си-ди-ром").