Data «яблоки», 500, 200 data «яблоки», 2500, 100
Data «огурцы», 400, 250 data «огурцы», 2000, 150
Data «арбузы», 200, 600 data «арбузы», 1200, 200
Data «персик», 800, 100 data «персик», 2000, 0
Data «», 0, 0 data «», 0, 0
Приведем теперь алгоритм и программу решения поставленной задачи в соответствии с выбранным сценарием и рассмотренным выше способом упорядочения массивов методом «пузырька».
При составлении алгоритмов и программы решения этой задачи будем использовать принципнисходящей разработки «сверху-вниз»: от основного алгоритма и основной части программы к алгоритмам и подпрограммам решения вспомогательных подзадач.
При решении сложных задач существенным становится организация и представление данных: подбор массивов и переменных для размещения и обработки данных в памяти ЭВМ, а при выделении подпрограмм - процедуры доступа к этим данным.
Для размещения исходных данных о товарах в поставленной задаче примем пять массивов: tv(l:N), s(l:N), m(l:N), с (1:N), p(l:N). Общий размер этих массивов ограничим числом N = 200, которое явно выделено в описании массивов с тем, чтобы в дальнейшем его можно было увеличить для большего количества данных без других изменений программы.
алг «выручка и остатки товаров» 'выручка и остатки товаров
N = 100 N = 100
массив tv[1:N],s[1:N],m1l:N] dim tv$(N),s(N),m(N)
массив L[1:N],c[1:N],p[1:N] dim L(N),c(N),p(N)
нач сls
вывод («товары:») ? «товары:»
данные-товаров gosub tovar 'товары
вывод («остатки:») ? «остатки:»
данные-остатков gosub ostatok 'остатки
вывод («-----») ? «-----»
подсчет-выручки gosub vyruch 'выручка
вывод («выручка», S) ? «выручка=»;S
вывод («сортировка:») ? «сортировка:»
сортировка-товаров gosub sortdan 'сортировка
кон end
По приведенному алгоритму и основной части программы видно, что последовательность ввода-вывода данных о товарах и результатов обработки полностью соответствует выбранному сценарию. Загрузку исходных данных в выбранные массивы в соответствии с принятым представлением выполнят два следующих вспомогательных алгоритма
алг «данные товаров» tovar: 'данные товаров
нач '
загрузка-товаров restore tovs
от k = 1 до N цикл for k = 1 to N
чmeнue(tv(k),s(k),m(k)) read tv$(k),s(k),m(k)
при tv(k) = «» то if tv$(k) = «» then exit for
вывод (tv(k),s(k),m(k)) ? tv$(k);s(k);m(k)
кцикл next k
если k< Nmo N := k-1 if k < N then N = k-1
кон return
Последний условный оператор изменяет верхнюю границу N массивов в том случае, если фактическое число данных меньше числа мест в массивах, размещенных в памяти компьютера.
алг «данные остатков» ostatok: 'данные остатков
нач '
загрузка-остатков restore osts
от k = 1 до N цикл for k = 1 to N
чmeнue(tv(k),c(k),p(k)) read tv$(k),c(k),p(k)
при tv(k) = «» выход if tv$(k) = «» then exit for
вывод (tv(k),c(k),p(k)) ? tv$(k);c(k);p(k)
кцикл next k
если k < N mo N := k-1 if k < N then N = k-1
кон return
Подсчет выручки в соответствии с постановкой задачи по данным, введенным в эти массивы, выполнят следующие вспомогательный алгоритм и подпрограмма:
алг «подсчет выручки» vyruch: 'подсчет выручки
нач '
S := 0 S = 0
от k = 1 до N цикл for k = 1 to N
S := S+(c(k)-s(k)) *(m(k)-p(k)) S = S+(c(k)-s(k))*(m(k)-p(k))
кцикл next k
кон return
Лемма 3. Конечным результатом выполнения данного вспомогательного алгоритма будет сумма
SN = (с(1) - s(l))×(m(l) - р(1)) + ... + (c(N) - s(N))×(m(N) - p(N)).
Доказательство проводится с помощью индуктивных рассуждений. Первое присваивание S := 0 обеспечивает начальное значение суммы S0 = 0.
О результатах k-го шага выполнения цикла можно сделать индуктивное утверждение
Sk= Sk-1 + (c(k)- s(k))-(m(k) - p(k)) = (с(1) - s(l))×(m(l) - p(l)) + ... + (c(k) - s(k))×(m(k) - p(k)).
Это утверждение доказывается с помощью математической индукции. На его основании можно сделать заключение о том, что конечным результатом выполнения цикла и алгоритма в целом будет сумма
SN = (с(1) - s(l))×(m(l) - р(1)) + ... + (c(N) - s(N))×(m(N) - p(N)).
Что и требовалось доказать.
Для сортировки данных воспользуемся алгоритмом упорядочения чисел по методу «пузырька», предполагая, что исходная и упорядоченная последовательность чисел r1, r2, ..., rN будут записаны в массиве x[l:N].
Для формирования результирующих упорядоченных данных используется массив индексов L(1:N), в котором будут записаны номера элементов исходной последовательности так, что x(k) = p(L(k)) для всех k = 1, ..., N.
алг «сортировка данных» sortdan: 'сортировка данных
массив x[1:N] dim x(N)
нач '
от k = 1 до N цикл for k = 1 to N
L(k) = k L(k) = k
x(k)=p(L(k)) x(k)=p(L(k))
кцикл next k
сортировка-массива gosub sortmas 'сортировка
от k = 1 до N цикл for k = 1 to N
i := L(k) i = L(k)
вывод (tv(i),c(i),p(i)) ? tv$(i);c(i);p(i)
кцикл next k
кон return
Модификация алгоритма упорядочения чисел, размещаемых в массиве x[l:N], с учетом перестановок значений в массиве индексов L[1:N] получает следующий вид:
алг «сортировка массива» sortmas: 'сортировка массива
нач '
от k = 1 до N-1 цикл for k = 1 to N-1
xmn := x(k) xmn = x(k)
imn := k imn = k
от i = k + 1 до N цикл for i = k + 1 to N
если x(i) < xmn то if x(i) < xmn then
xmn := x(i) xmn = x(i)
imn := i imn = i
кесли end if
кцикл next i
Imn := L(imn) Imn = L(imn)
xmn := x(imn) xmn = x(imn)
L(imn) := L(k) L(imn) = L(k)
x(imn) := x(k) x(imn) = x(k)
L(k) :=Imn L(k) = Imn
x(k) := xmn x(k) = xmn
кцикл next k
кон return
Лемма 4. Результатами выполнения алгоритма сортировки массива будут последовательность чисел, упорядоченная по возрастанию
х(1)' £ х(2)' £ ... £ x(N)'
и последовательность индексов в массиве L[1:N], удовлетворяющих условиям
x(k)' = p(L(k)) для всех k = 1, .... N.
Доказательство. Первое утверждение об упорядоченности значений х(1)' £ х(2)' £... £ x(N)' массива x[l:N] по завершении алгоритма следует из доказательства правильности алгоритма упорядочения последовательности чисел. Для доказательства второго утверждения рассмотрим результаты перестановок значений элементов:
Imn := L(imn) Imn = L(imn)
xmn := x(imn) xmn = x(imn)
L(imn) := L(k) L(imn)' = L(k)
x(imn) := x(k) x(imn)' = x(k)
L(k) := Imn L(k)' = Imn = L(imn)
x(k) := xmn x(k)' = xmn = x(imn)
Перед началом выполнения алгоритма упорядочения массива в алгоритме сортировки данных массив индексов L[1:N] и упорядочиваемый массив x[l:N] получают значения, удовлетворяющие следующим соотношениям:
х(i)' = P(L(i) для всех i = 1, ..., N.
Покажем, что эти соотношения сохраняются после каждого шага цикла. Действительно, на каждом очередном k-м шаге цикла будут получены следующие результаты:
Imn = L(imn)
xmn = x(imn) == p(L(imn))
L(imn)' = L(k)
x(imn)' = x(k) = p(L(k)) = p(L(imn)')
L(k)' = Imn = L(imn)
x(k)' = xmn = x(imn) = p(L(imn)) = p(L(k)')
Следовательно, после каждого шага цикла для переставленных элементов массивов сохраняются соотношения
x(i)' = p(L(i)) для всех i = 1, ..., N.
Что и требовалось доказать.
Утверждение. Конечным результатом выполнения алгоритма и подпрограммы сортировки данных будет список данных, в котором последовательность значений р1', р2', ..., рN' будет упорядочена:
p1' £ р2' £ … £ pN'
Доказательство. В соответствии с доказанной выше леммой 4 значения в массиве x[l:N] после выполнения алгоритма упорядочения чисел будут удовлетворять условиям
х(1)' £ х(2)' £ ... £ x(N)'.
В силу этой же леммы 4 значения индексов в массиве L[1:N] будут удовлетворять соотношениям x[k]' = p(L(k)) для всех k = 1, ..., N.
Конечным результатом алгоритма сортировки данных является вывод значений из массива p[l:N] в соответствии с массивом индексов L[1:N]. Таким образом, очередные значения последовательности p1', p2',... будут равны:
р1' = p(L(l)) = х(1)',
p2'= р(L (2)) = х(2)'и т. д.
В силу упорядоченности значений х(1)', х(2)', ..., x(N)' получаем, что значения выходной последовательности будут также упорядочены:
p1' £ р2' £ … £ pN'
Что и требовалось доказать.
Следовательно, весь комплекс алгоритмов и подпрограмм полностью соответствует поставленной задаче и гарантирует получение правильных результатов, при любых допустимых исходных данных.
Проверка на ЭВМ программы сортировки товаров, составленной таким систематическим образом, при указанных исходных данных дает следующие результаты:
товары:
Яблоки, 500, 200
Огурцы, 400, 250
Арбузы, 200, 600
Персики, 800, 100
остатки:
Яблоки, 2500, 100
Огурцы, 2000, 150
Арбузы, 1200, 200
Персики, 2000, 0
выручка = 880000
сортировка:
Персики, 2000, 0
Яблоки, 2500, 100
Огурцы, 2000, 150
Арбузы, 1200, 200
Таким образом, выполнение программы подтверждает правильность составленного комплекса алгоритмов. Полное и исчерпывающее обоснование их правильности приведено выше.
В о п р о с ы
1. Что такое сложные алгоритмы и программы?
2. Что такое упорядоченная последовательность?
3. Что такое упорядочение методом «пузырька»?
4. Как доказывается правильность сложных программ?
5. Что такое разработка программ «сверху-вниз»?
З а д а ч и
1. Составьте алгоритм и программу обработки данных о товарах и постройте обоснование их правильности для следующих задач:
а) подсчет планируемых доходов от продажи товаров;
б) подсчет начальной суммы вложений реализации товаров;
в) подсчет планируемой прибыли от продажи товаров;
г) подсчет текущей задолженности.
2. Составьте алгоритм и программу сортировки данных о товарах и постройте обоснование их правильности для следующих задач:
а) сортировка данных по начальному количеству;
б) сортировка данных по остаточному количеству;
в) сортировка данных по начальной стоимости;
г) сортировка данных по продажной цене.
3. Составьте алгоритм и программу сортировки данных о товарах по следующим признакам и приведите обоснование их правильности:
а) по доле планируемых доходов от реализации товаров;
б) по доле прибыли от реализации товаров;
в) по доле убыточности реализации товаров.