Свободное падение тела с учетом сопротивления среды

При реальных физических движениях тел в газовой или жидкостной среде трение накладывает огромный отпечаток на характер движения. Каждый понимает, что предмет, сброшенный с большой высоты (например, парашютист, прыгнувший с самолета), вовсе не движется равноускоренно, так как по мере набора скорости возрастает сила сопротивления среды. Даже эту. относительно несложную, задачу нельзя решить средствами «школьной» физики; таких задач, представляющих практический интерес, очень много. Прежде чем приступать к обсуждению соответствующих моделей, вспомним, что известно о силе сопротивления.

Закономерности, обсуждаемые ниже, носят эмпирический характер и отнюдь не имеют столь строгой и четкой формулировки, как второй закон Ньютона. О силе сопротивления среды движущемуся телу известно, что она, вообще говоря, растет с ростом скорости (хотя это утверждение не является абсолютным). При относительно малых скоростях величина силы сопротивления пропорциональна скорости и имеет место соотношение Fcoпp = k1v, где k1 определяется свойствами среды и формой тела. Например, для шарика k1 = 6πμr - это формула Стокса, где μ -динамическая вязкость среды, r - радиус шарика. Так, для воздуха при t = 20°С и давлении 1 атм.μ = 0,0182 Н∙с∙м-2, для воды 1,002 Н∙с∙м-2, для глицерина 1480 Н∙с∙м-2.

Оценим, при какой скорости для падающего вертикально шара сила сопротивления сравняется с силой тяжести (и движение станет равномерным).

Имеем

свободное падение тела с учетом сопротивления среды - student2.ru

или

свободное падение тела с учетом сопротивления среды - student2.ru

Пусть r = 0,1 м, ρ = 0,8∙103 кг/м3 (дерево). При падении в воздухе v* ≈ 960 м/с, в воде v*≈ 17 м/с, в глицерине v* ≈ 0,012 м/с.

На самом деле первые два результата совершенно не соответствуют действительности. Дело в том, что уже при гораздо меньших скоростях сила сопротивления становится пропорциональной квадрату скорости: Fcoпp = k2v2. Разумеется, линейная по скорости часть силы сопротивления формально также сохранится, но если k2v2>> k1v, то вкладом k1v можно пренебречь (это конкретный пример ранжирования факторов). О величине k2 известно следующее: она пропорциональна площади сечения тела S, поперечного по отношению к потоку, и плотности среды ρсреды и зависит от формы тела. Обычно представляют k2 = 0,5сSρсрeды, где с - коэффициент лобового сопротивления - безразмерен. Некоторые значения с (для не очень больших скоростей) приведены на рис. 7.6.

При достижении достаточно большой скорости, когда образующиеся за обтекаемым телом вихри газа или жидкости начинают интенсивно отрываться от тела, значение с в несколько раз уменьшается; для шара оно становится приблизительно равным 0,1. Подробности можно найти в специальной литературе.

Вернемся к указанной выше оценке, исходя из квадратичнойзависимости силысопротивления от скорости.

Имеем

свободное падение тела с учетом сопротивления среды - student2.ru

или

свободное падение тела с учетом сопротивления среды - student2.ru (7.4)

свободное падение тела с учетом сопротивления среды - student2.ru

Рис. 7.6. Значения коэффициента лобового сопротивления для некоторых тел, поперечное сечение которых имеет указанную на рисунке форму (см. книгу П.А.Стрелкова)

Для шарика

свободное падение тела с учетом сопротивления среды - student2.ru (7.5)

Примем r = 0,1 м, ρ = 0,8∙103 кг/м3 (дерево). Тогда для движения в воздухе (ρвозд= 1,29 кг/м3) получаем v* ≈ 18 м/с, в воде (ρводы ≈ 1∙103 кг/м3) v* ≈ 0,65 м/с, в глицерине (ρглицерина = 1,26∙103 кг/м3) v* ≈ 0,58 м/с.

Сравнивая с приведенными выше оценками линейной части силы сопротивления, видим, что для движения в воздухе и в воде ее квадратичная часть сделает движение равномерным задолго до того, как это могла бы сделать линейная часть, а для очень вязкого глицерина справедливо обратное утверждение. Рассмотрим свободное падение с учетом сопротивления среды. Математическая модель движения - уравнение второго закона Ньютона с учетом двух сил, действующих на тело; силы тяжести и силы сопротивления среды:

свободное падение тела с учетом сопротивления среды - student2.ru (7.6)

Движение является одномерным; проецируя векторное уравнение на ось, направленную вертикально вниз, получаем

свободное падение тела с учетом сопротивления среды - student2.ru (7.7)

Вопрос, который мы будем обсуждать на первом этапе, таков: каков характер изменения скорости со временем, если все параметры, входящие в уравнение (7.7), заданы? При такой постановке модель носит сугубо дескриптивный характер. Из соображений здравого смысла ясно, что при наличии сопротивления, растущего со скоростью, в какой-то момент сила сопротивления сравняется с силой тяжести, после чего скорость больше возрастать не будет. Начиная с этого момента, dv/dt = 0, и соответствующую установившуюся скорость свободное падение тела с учетом сопротивления среды - student2.ru можно найти из условия mg – k1v – k2v2 = 0 , решая не дифференциальное, а квадратное уравнение. Имеем

свободное падение тела с учетом сопротивления среды - student2.ru (7.8)

(второй - отрицательный - корень, естественно, отбрасываем). Итак, характер движения качественно таков: скорость при падении возрастает от v0 до свободное падение тела с учетом сопротивления среды - student2.ru ; как и по какому закону - это можно узнать, лишь решив дифференциальное уравнение (7.7).

Однако, даже в столь простой задаче мы пришли к дифференциальному уравнению, которое не относится ни к одному из стандартных типов, выделяемых в учебниках по дифференциальным уравнениям, допускающих очевидным образом аналитическое решение. II хотя это не доказывает невозможность его аналитического решения путем хитроумных подстановок, но они не очевидны (один из лучших помощников в их поиске - справочник Камке). Допустим, однако, что нам удастся найти такое решение, выраженное через суперпозицию нескольких алгебраических и трансцендентных функций - а как найти закон изменения во времени перемещения? - Формальный ответ прост:

свободное падение тела с учетом сопротивления среды - student2.ru (7.9)

но шансы на реализацию этой квадратуры уже совсем невелики. Дело в том, что класс привычных нам элементарных функций очень узок, и совершенно стандартна ситуация, когда интеграл от суперпозиции элементарных функций не может быть выражен через элементарные функции в принципе. Математики давно расширили множество функций, с которыми можно работать почти так же просто, как с элементарными (т.е. находить значения, различные асимптотики, строить графики, дифференцировать, интегрировать). Тем, кто знаком с функциями Бесселя, Лежандра, интегральными функциями и еще двумя десятками других, так называемых, специальных функций, легче находить аналитические решения задач моделирования, опирающихся на аппарат дифференциальных уравнений. Однако даже получение результата в виде формулы не снимает проблемы представления его в виде, максимально доступном для понимания, чувственного восприятия, ибо мало кто может, имея формулу, в которой сопряжены логарифмы, степени, корни, синусы и тем более специальные функции, детально представить себе описываемый ею процесс -а именно это есть цель моделирования.

В достижении этой цели компьютер - незаменимый помощник. Независимо от того, какой будет процедура получения решения - аналитической или численной, -задумаемся об удобных способах представления результатов. Разумеется, колонки чисел, которых проще всего добиться от компьютера (что при табулировании формулы, найденной аналитически, что в результате численного решения дифференциального уравнения), необходимы; следует лишь решить, в какой форме и размерах они удобны для восприятия. Слишком много чисел в колонке быть не должно, их трудно будет воспринимать, поэтому шаг, с которым заполняется таблица, вообще говоря, гораздо больше шага, с которым решается дифференциальное уравнение в случае численного интегрирования, т.е. далеко не все значения v и S, найденные компьютером, следует записывать в результирующую таблицу (табл. 7.2).

Таблица 7.2

Наши рекомендации