Внутренние запоминающие устройства: оперативное запоминающее устройство, кэш-память, постоянное запоминающее устройство
Другим важным функциональным узлом компьютера является запоминающее устройство, или память. Память, в которой хранятся исполняемые программы и данные, называется оперативным запоминающим устройством (ОЗУ), или RAM (Random Access Memory) - памятью со свободным доступом. ОЗУ позволяет записывать и считывать информацию из ячейки, обращаясь к ней по ее номеру или адресу. Ячейка памяти имеет стандартное число двоичных разрядов – один байт. Информация в ОЗУ сохраняется все время, пока на схемы памяти подается питание, т.е. она является энергозависимой.
Существует два вида ОЗУ, отличающиеся техническими характеристиками: динамическое ОЗУ, или DRAM (Dynamic RAM), и статическое ОЗУ, или SRAM (Static RAM). Быстродействие динамического ОЗУ на порядок ниже, чем статического. Обычно, в качестве оперативной или видеопамяти используется динамическое ОЗУ. Статическое ОЗУ используется в качестве небольшой буферной сверхбыстродействующей памяти. В кэш – память из динамической памяти заносятся команды и данные, которые процессор будет выполнять в данный момент.
Скорость работы ОЗУ ниже, чем быстродействие процессора, поэтому применяются различные методы для повышения ее производительности. Например, размещение в одном корпусе микросхемы СБИС нескольких модулей памяти с чередованием адресов.
Для уменьшения влияния времени обращения процессора к ОЗУ и увеличения производительности компьютера дополнительно устанавливается сверхбыстродействующая буферная память, выполненная на микросхемах статической памяти. Эта память называется кэш–памятью (от анг. Cache – запас). Время обращения к данным в кэш-памяти на порядок ниже, чем ОЗУ, и сравнимо со скоростью работы самого процессора. Современные процессоры имеют встроенную кэш-память, которая находится внутри процессора, кроме этого есть кэш-память и на системной плате. Чтобы их различать, она делится на уровни. На кристалле самого процессора находится кэш-память первого уровня, она имеет объем порядка 16-128 Кбайт и самую высокую скорость обмена данными. В корпусе процессора, но на отдельном кристалле находится кэш-память второго уровня, которая имеет объем порядка 256 Кбайт – 2 Мбайта. Кэш-память третьего уровня расположена на системной плате, ее объем может составлять 16 – 1000 Мбайт.
Использование процессом кэш-памяти увеличивает производительность процессора, особенно в тех случаях, когда происходит последовательное преобразование относительно небольшого числа данных, которые постоянно во время преобразования хранятся в кэш-памяти.
В одном адресном пространстве с ОЗУ находится специальная память, предназначенная для постоянного хранения таких программ, как тестирование и начальная загрузка компьютера, управление внешними устройствами. Она является энергонезависимой, т.е. сохраняет записанную информацию при отсутствии питания. Такая память называется постоянным запоминающим устройством (ПЗУ) или ROM (Read Only Memory). Постоянные запоминающие устройство можно разделить по способу записи с них информации на следующие категории:
ПЗУ, программируемые однократно. Программируются при изготовлении и не позволяют изменять записанную в них информацию.
Перепрограммируемые ПЗУ (ППЗУ). Позволяют перепрограммировать их многократно. Изменение содержания ППЗУ можно выполнять как непосредственно в составе вычислительной системы (такая технология называется флэш - технологией), так и вне ее, на специальных устройствах, называемых программаторами.
Внутренние шины
Общая шина, наряду с центральным процессором и запоминающим устройством, во многом определяет производительность работы компьютера, так как обеспечивает обмен информацией между функциональными узлами. Общая шина делится на три отдельные шины по типу передаваемой информации: шина адреса, шина данных, шина управления. Каждая шина характеризуется: шириной – числом параллельных проводников для передачи информации; тактовой частотой – частотой, на которой работает контроллер шины при формировании циклов передачи информации.
Шина адреса предназначена для передачи адреса ячейки памяти или порта ввода-вывода. Ширина шины адреса определяет максимальное количество ячеек, которое она может напрямую адресовать. Если ширина шины адреса n, то количество адресуемой памяти равно 2n.
Шина данных предназначена для передачи команд и данных, и ее ширина во многом определяет информационную пропускную способность общей шины. В современных компьютерах ширина шины данных составляет 32 – 64.
Шина управления включает в себя все линии, которые обеспечивают работу общей шины. Ее ширина зависит от типа шины и определяется алгоритмом ее работы или протоколом работы шины. Протокол работы шины состоит из нескольких циклов и выполняется контроллером шины, расположенным внутри процессора (рис. 2.2.1.), или отдельным контроллером шины (рис. 2.1.11.).
Разработчики предлагают включать в состав компьютера дополнительные шины, связывающие напрямую центральный процессор и отдельные наиболее быстродействующие устройства. Такие шины получили название локальных шин. На рис. 2.1.11 локальные шины используются для подключения к процессору запоминающего устройства и видеоконтроллера.
Основные характеристики общих и локальных шин, применяемых в ПК фирмы IBM.
Общая шина PCI применяется в настольных компьютерах, в настоящее время используется модификация PCI 2/1/ Тактовая частота контроллера этой шины 66 МГц, ширина шины адреса – 32, а шины данных – 64 разряда. Пиковая пропускная способность шины 528 Мбайт/с.
Общая шина PCMCIA применяется в переносных компьютерах класса ноутбук и имеет параметры, сравнимые с параметрами шины PCI/
Локальная шина для подключения видеоконтроллера AGP позволяет организовать непосредственную связь видеоконтроллера и оперативного запоминающего устройства. Она ориентирована на массовую передачу видеоданных. Имеет конвейерную организацию выполнения операций чтения/записи, что позволяет избежать задержек при обращении к модулям памяти. За один такт работы может передать два, четыре или восемь блоков данных, в зависимости от установленного режима работы. При установке режима параллельной передачи восьми блоков обеспечивает пиковую скорость передачи 2112 Мбайт/с.