Как упростить логическую формулу?
Равносильные преобразования логических формул имеют то же назначение, что и преобразования формул в обычной алгебре. Они служат для упрощения формул или приведения их к определённому виду путем использования основных законов алгебры логики.
Под упрощением формулы, не содержащей операций импликации и эквиваленции, понимают равносильное преобразование, приводящее к формуле, которая либо содержит по сравнению с исходной меньшее число операций конъюнкции и дизъюнкции и не содержит отрицаний неэлементарных формул, либо содержит меньшее число вхождений переменных. |
Некоторые преобразования логических формул похожи на преобразования формул в обычной алгебре (вынесение общего множителя за скобки, использование переместительного и сочетательного законов и т.п.), тогда как другие преобразования основаны на свойствах, которыми не обладают операции обычной алгебры (использование распределительного закона для конъюнкции, законов поглощения, склеивания, де Моргана и др.).
Покажем на примерах некоторые приемы и способы, применяемые при упрощении логических формул:
1)
(законы алгебры логики применяются в следующей последовательности: правило де Моргана, сочетательный закон, правило операций переменной с её инверсией и правило операций с константами);
2)
(применяется правило де Моргана, выносится за скобки общий множитель, используется правило операций переменной с её инверсией);
3)
(повторяетсявторойсомножитель, что разрешено законом идемпотенции; затем комбинируются два первых и два последних сомножителя и используется закон склеивания);
4)
(вводится вспомогательный логический сомножитель ( ); затем комбинируются два крайних и два средних логических слагаемых и используется закон поглощения);
5)
(сначаладобиваемся, чтобы знак отрицания стоял только перед отдельными переменными, а не перед их комбинациями, для этого дважды применяем правило де Моргана; затем используем закон двойного отрицания);
6)
(выносятся за скобки общие множители; применяется правило операций с константами);
7)
(к отрицаниям неэлементарных формул применяется правило де Моргана; используются законы двойного отрицания и склеивания);
8)
(общий множитель x выносится за скобки, комбинируются слагаемые в скобках — первое с третьим и второе с четвертым, к дизъюнкции применяется правило операции переменной с её инверсией);
9)
(используются распределительный закон для дизъюнкции, правило операции переменной с ее инверсией, правило операций с константами, переместительный закон и распределительный закон для конъюнкции);
10)
(используются правило де Моргана, закон двойного отрицания и закон поглощения).
Из этих примеров видно, что при упрощении логических формул не всегда очевидно, какой из законов алгебры логики следует применить на том или ином шаге. Навыки приходят с опытом.
Задача нахождения среди равносильных схем наиболее простых является очень важной. Большой вклад в ее решение внесли российские учёные Ю.И. Журавлев, С.В. Яблонский и др.
При рассмотрении переключательных схем возникают две основные задачи: синтез и анализ схемы.
СИНТЕЗ СХЕМЫ по заданным условиям ее работысводится к следующим трём этапам:
- составлению функции проводимости по таблице истинности, отражающей эти условия;
- упрощению этой функции;
- построению соответствующей схемы.
АНАЛИЗ СХЕМЫ сводится к
- определению значений её функции проводимости при всех возможных наборах входящих в эту функцию переменных.
- получению упрощённой формулы.
Примеры.
1. Построим схему, содержащую 4 переключателя x, y, z и t, такую, чтобы она проводила ток тогда и только тогда, когда замкнут контакт переключателя t и какой-нибудь из остальных трёх контактов.
Решение. В этом случае можно обойтись без построения таблицы истинности. Очевидно, что функция проводимости имеет вид F(x, y, z, t) = t × (x v y v z), а схема выглядит так:
2. Построим схему с пятью переключателями, которая проводит ток в том и только в том случае, когда замкнуты ровно четыре из этих переключателей.
Схема имеет вид:
3. Найдем функцию проводимости схемы:
Решение. Имеется четыре возможных пути прохождения тока при замкнутых переключателях a, b, c, d, e : через переключатели a, b; через переключатели a, e, d; через переключатели c, d и через переключатели c, e, b. Функция проводимости F(a, b, c, d, e) = a×b v a× e×d v c×d v c×e×b.
4. Упростим переключательные схемы:
а)
Решение:
Упрощенная схема:
б)
.
Здесь первое логическое слагаемое является отрицанием второго логического слагаемого , а дизъюнкция переменной с ее инверсией равна 1.
Упрощенная схема :
в)
Упрощенная схема:
г)
Упрощенная схема:
д)
(по закону склеивания)
Упрощенная схема:
е)
Решение:
Упрощенная схема: