Классификация серверов по выполняемым задачам

Оглавление

Введение. 3

1....................................................................................................................... Общая часть. 5

1.1............................................................................ История и основные сведения. 5

1.2...................................................................................... Классификация серверов. 7

1.2.1....................... Классификация серверов по выполняемым задачам. 7

1.2.2............................................... Классификация серверов по их задачам. 9

1.2.3............................... Размеры и другие детали внешнего исполнения. 10

Введение

Тема дипломного проекта «Установка и настройка серверов для малого предприятия» актуальная, так как сервера, устанавливаются почти на каждом предприятии и нуждаются в обслуживании и ремонте. При этом, приобретая сервер для необходимых задач, повторно покупать новое оборудование через несколько лет не придется, так как проще и дешевле сделать апгрейд аппаратной части и производить ремонт, если необходимо, имеющегося сервера. На любом предприятии, из-за основных расчетов и процессов автоматизации, важную роль играют сервера. Они удобны в размещении, занимают немного места, тем самым повышая свою актуальность. Даже несмотря на то, что сервера обычно небольшого размера, они имеют огромные производительные возможности. Однако следует понимать, что в процессе повседневной деятельности у сервера могут возникнуть неполадки и их необходимо уметь устранять. Именно поэтому данная тема является актуальной.

Цель данной дипломной работы – научиться устанавливать и вводить в эксплуатацию сервера для малого предприятия.

Задачи:

- изучить основные элементы серверов и их технические характеристики;

- рассмотреть принципы работы серверов;

- изучить виды технического обслуживания серверов;

При выполнении дипломной работы я использовал следующие принципы методологии:

- Анализ – подборка материала по теме, использование технической литературы, материалов из сети Интернет, изучение собранной информации.

- Наблюдение – основываясь на материале, рассматривается функционирование нерабочей техники с целью определить способы исправления отклонений.

- Сравнение – на примере нескольких типовых образцов провести сравнительный анализ характеристик по основным параметрам.

Общая часть

История и основные сведения

Что представляет из себя сервер? Это выделенный компьютер из числа всех компьютеров предприятия, где не требуется непосредственная работа человека. Поэтому, сервер и обычная рабочая станция, могут быть идентичны как внешне, так и аппаратной частью. Участие человека необходимо в нескольких случаях:

- Первоначальная установка и настройка сервера.

- Аппаратно-техническое обслуживание.

- Нештатные ситуации.

Серверы размещаются в специальных помещениях – серверных. Младшие модели серверов могут размещаться в офисных помещениях, что делает их неотличимыми от обычных рабочих станций. Отличает их то, что сервера предназначены для бесперебойной работы 24/7, поэтому для обеспечения отказоустойчивости необходимо подключение бесперебойного источника питания повышенной емкости. Для управления серверами требуются квалифицированные специалисты, должность которых называется «системный администратор».

В XXI веке работа без персональных компьютеров почти невозможна. Они сильно влились в нашу жизнь, став главными помощниками в повседневной деятельности и работе. Существуют множество компьютеров различных фирм, различных назначений и поколений. Основные критерии при создании сервера являются возможность бесперебойной и стабильной работы. Для обеспечения стабильности компьютерных систем разработчиками были придуманы различные методы защиты информации с помощью систем резервного копирования и зеркалирования, а также горячей замены аппаратных модулей, таких как блоки питания и жесткие диски. Несмотря на это, существует множество внештатных ситуаций, которые приводят не только к потере данных и остановке системы, но и к более серьезным последствиям. Для уменьшения подобных проблем в данной дипломной работе мы рассмотрим основные компоненты, принципы работы, перспективы развития и техническое обслуживание серверов.

Чтобы лучше понять, что представляют собой современные серверы, кратко рассмотрим историю их возникновения. Раньше, вся обработка информации проводилась на мейнфреймах, а пользователю предоставлялся терминал, который представлял собой алфавитно-цифровой дисплей и клавиатуру, которые подключались непосредственно к мейнфрейму и обеспечивали доступ к данным.

Мейнфрейм (mainframe – основная стойка (англ.)) представляли собой мощные, универсальные ЭВМ для массового одновременного обслуживания нескольких тысяч пользователей.

Главная особенность их архитектуры – сбалансированность, что достигалось за счёт дополнительного процессора на уровне канала, который синхронизируется с вычислительным процессором по прерываниям. Обращаясь к канальному процессору за данными, вычислительный процессор в это время переключался на расчеты для параллельных задач.

Сервер стал критическим элементом в современной инфраструктуре обработки данных, отказ, которого приводит к серьезным временным, а значит и финансовым потерям. Таким образом, надёжность сервера является важнейшим фактором. Приведём несколько примеров надёжности и сохранности данных на серверах:

– резервирование компонентов;

– память с контролем четности (ECC);

– удаленное управление и диагностика сервера;

– использование специальных серверных компонентов.

Классификация серверов

Ресурсы сервера

Аппаратные решения

Крайней степенью специализации серверов являются, так называемые аппаратные решения (аппаратные роутеры, сетевые дисковые массивы, аппаратные терминалы и т. п.). Аппаратное обеспечение таких решений строится «с нуля» или перерабатывается из существующей компьютерной платформы без учёта совместимости, что делает невозможным использование устройства со стандартным программным обеспечением.

Программное обеспечение в аппаратных решениях загружается в постоянную и/или энергонезависимую память производителем.

Аппаратные решения, как правило, более надёжны в работе, чем обычные серверы, но менее гибки и универсальны. По цене, аппаратные решения могут быть как дешевле, так и дороже серверов, в зависимости от класса оборудования.

Псевдоаппаратные решения

В последнее время появилось большое количество бездисковых серверных решений на базе компьютеров (как правило x86) форм-фактора Mini-ITX и меньше со специализированной переработкой GNU/Linux на SSD-диске (ATA-флэш или флеш-карте), позиционируемых как «аппаратные решения». Данные решения не принадлежат к классу аппаратных, а являются обычными специализированными серверами. В отличие от (более дорогих) аппаратных решений они наследуют проблемы платформы и программных решений, на которых основаны.

Производительность

Производительность является основной характеристикой сервера. Она определяется его аппаратной конфигурацией и зависит от выполняемых серве-ром задач. Чем больший объем вычислений необходим для решения задачи, тем более производительные компоненты используются.

Для повышения производительности серверов применяются технологии, основанные на последних достижениях в области компьютерной техники. Например:

– четыре процессорных разъёма на одной материнской плате;

– многоканальный режим работы оперативной памяти

– независимые шины PCI-Express x16;

– жесткие диски с интерфейсом SAS и высокой скоростью вращения шпинделя (10000-15000 об/мин);

– объединение жёстких дисков в RAID-массивы.

Производительность сервера также можно увеличить при помощи построения подсистем памяти и ввода-вывода, максимально эффективно использующих возможности архитектуры процессоров.

Масштабируемость

Масштабируемость — это возможность увеличить вычислительную мощность сервера или операционной системы (в частности, их способности выполнять больше операций или транзакций за определённый период времени, либо запускать больше различных служб) за счёт установки большего числа процессоров, оперативной памяти и т. д. или их замены на более производительные. Это масштабируемость аппаратная. Изначально серверы в продаже идут в базовой комплектации, но с заложенным потенциалом к «апгрейду» — аппаратная масштабируемость. К примеру, базовый набор сервера имеет один процессор, два модуля памяти, например, 2х2 Гб. и дисковый массив из двух жёстких дисков, допустим, 146 Гб. Далее (или сразу) по мере потребности можно установить ещё один процессор, память или добавить диски в массив.

Масштабируемость бывает вертикальная и горизонтальная. Под вертикальной масштабируемостью подразумевается создание одной системы с множеством процессоров, а под горизонтальной — объединение компьютерных систем в единый виртуальный вычислительный ресурс. Каждый из этих подходов рассчитан на использование в различных областях. Так, горизонтальное масштабирование лучше всего подходит для балансировки нагрузки Web-приложений, а вертикальное масштабирование лучше всего подходит для больших баз данных, управлять которыми на одной системе проще и эффективнее. Так же бывает программная масштабируемость.

Время простоя

Недооценка и переоценка влияния этого фактора одинаково опасны. При недооценке этого фактора ваша компания понесёт финансовые потери при простом сервере, а при переоценке - при приобретении сервера.

Если вам кажется, что нет ничего страшного в том, что сервер постоит час-другой в рабочее время - задумайтесь - бухгалтерия и другие ответственные лица и отделы вашей компании, работа которых зависит от этого сервера, так в реальной жизни считать не будут, а ремонт сервера в этих условиях будет осложнён как минимум отрицательным настроением.

Факторы, влияющие на время простоя:

– избыточность

Отказоустойчивость — это способность сервера продолжать работать при отказе любого из его компонентов. Наиболее часто из строя выходят жесткие диски, корпусные вентиляторы, вентиляторы на процессорах, и блоки питания. Избыточность этих компонентов даст возможность серверу работать дальше при отказе любого из них.

– удобство ремонта и замены

Ни при каких условиях нельзя полностью и полноценно восстановить и проверить работоспособность сервера за пятнадцать минут. Средства горячей замены вместе с избыточностью дают возможность попросту избежать простоя в большинстве случаев, позволяя заменить любые комплектующие без перезагрузки или отключения сервера.

Система охлаждения

Выбор системы охлаждения

Система охлаждения является очень важной частью системы, поэтому сильно влияет на отказоустойчивость сервера. То, что сервер, который приобретается в собранном виде, уже оснащен как минимум двумя кулерами, еще не гарантирует должного охлаждения, а, следовательно, бесперебойной работы. Следует помнить, что значительное число всякого рода отказов, зависания программ и операционной системы, несанкционированная перезагрузка, заметное снижение производительности сервера, повышенный шум, отказ включаться с первого раза – все это может быть признаком неправильного выбора кулера. Причем в данном аспекте под кулером следует понимать не просто моторчик с вентилятором, а всю систему охлаждения того или иного модуля. Эта система состоит из рассеивающей части, которая чаще всего представлена радиаторами различной формы и размера, а также из устройства обеспечения воздушного потока или конвенции, которые представлены, как правило, многолопастными вентиляторами или крыльчатками. Это так называемая активная воздушная система охлаждения, которая на сегодняшний день используется в 90% компьютеров в мире. Ее достоинства — невысокая сложность установки и небольшая стоимость (в сравнении с более сложными системами охлаждения). Исходя из размеров, производителя и марки зависит уровень шума.

Существуют так же пассивные системы охлаждения, но используются лишь когда возможно безопасное применение. Единственным плюсом в них считается идеальная тишина и относительно легкое обслуживание, которое заключается в периодическом удалении пыли из радиатора. Но эффект от такого охлаждения очень и очень невелик, а увеличить его можно лишь только за счет увеличения размеров радиатора, что не всегда возможно в условиях ограниченного пространства корпуса системного блока, да и габариты других его компонентов зачастую мешают это сделать. Бывают и более сложные, чем воздушные, это активные жидкостные системы охлаждения, включающие в себя систему помп и трубопроводов, по которым непрерывно циркулирует жидкость (обычно это вода). Такая система очень эффективна, малошумная, но большая стоимость и высокая сложность монтажа — не всем подходит. Да и опасность ее разгерметизации, влекущая за собой попадание жидкости на электронные компоненты, и как следствие, короткое замыкание и выход их строя, порой говорят не в ее пользу при выборе. Ну и еще более серьезная система охлаждения, такая же, как и жидкостная, но в ней используется жидкий азот. Эффективность ее на самом высочайшем уровне! Стоимость, чрезвычайная сложность монтажа и обслуживания — тоже! В любом случае при выборе кулера, как для процессора, так и для блока питания или для охлаждения массива жестких дисков, всегда возникает определенный компромисс между шумовым давлением приборов охлаждения и их эффективностью. Причем иногда важнее оказывается эффективность прибора, а иногда не менее важным оказывается низкий уровень шума.

Так, для серверов, в задачу которых входит длительная, непрерывная и бесперебойная работа, важнее эффективность кулера. Шумом можно либо пренебречь, либо установить такой сервер в отдельном помещении, где шумовая нагрузка не будет иметь большого значения. Для серверов же, работающих в жилых помещениях, на звуковых студиях и в медицинских учреждениях, низкий уровень шума бывает важен.

Самым важным «проблемным» параметром, от которого зависит как создаваемый кулером шум, так и его эффективность в качестве элемента охлаждения, является оборотистость вентилятора. Чем больше оборотов в минуту (RPM) делает мотор и лопасти вентилятора, тем выше уровень шума, но тем большее количество воздуха прогоняет система, а, следовательно, выше ее эффективность. Можно смело утверждать, что уровень шума зависит от оборотов на полных 80 процентов. Остальные 20 процентов приходятся на конфигурацию лопастей вентилятора, а также на другие элементы охлаждения, рассекающие воздушный поток и приводящие к образованию вихрей.

Также возможны и чисто механические шумы в подшипниках. Необходимо отметить, что самым надежным и идеальным вариантом для вентиляторов являются подшипники качения, или, как их еще называют, шарикоподшипники. Преимущества их перед подшипниками скольжения несомненны: это повышенная износостойкость и, как следствие, более долгий срок службы. Ведь смазка в подшипниках скольжения, высыхая препятствует нормальному вращению вентилятора, что замедляет его работу, и в конце концов приводит к выходу его из строя.

Такие кулеры просто не нужно приобретать, отсеивая их при выборе. Также, легенда о том, что шум подшипников можно устранить смазкой, не подтверждается практикой. Наоборот, как правило, разборка вентилятора и внесение смазки усиливают шум, а не снижают его, что подтверждается объективными замерами шумового давления. Допустимым принято считать уровень шума от 30 до 40 Дб, но комфортным и желательным все же считается шум громкостью не более 30 Дб.

Немаловажно, что уровень шума напрямую зависит и от диаметра вентилятора, ведь у больших кулеров диаметром 120-140 мм на самых малых оборотах производительность такая же, как у небольших вентиляторов диаметром 80-90 мм, работающих на самых больших оборотах. Понятно, какой из этих вентиляторов будет громче «шуметь» — тот, у которого больше скорость вращения.

Точное число оборотов вентилятора не указывается в его маркировке, а отображается либо литерами L, M, H, означающих «низкие», «средние» и «высокие», либо делится на классы по рабочему току. При важности эффективного охлаждения следует выбирать кулеры с высокими оборотами, а при необходимости малого шума – с низкими. Но не следует забывать о понижении эффективности охлаждения в этом случае.

Компромисс между шумом и эффективностью можно частично решить за счет применения более эффективных радиаторов с менее шумящими вентиляторами. Здесь на первое место выходят такие параметры радиаторов, как их масса, геометрия и материал изготовления. Следует помнить, что медный радиатор заметно эффективнее алюминиевого, но и дороже его, тяжелый эффективнее, но занимает больше места, а радиатор с очень рассеченной геометрией (обилием тонких ребер большой площади) тоже эффективнее, но очень быстро и плотно запылится. Это необходимо учитывать, так как, выбрав подобный радиатор, вместо эффективности можно получить перегрев, стоит лишь прозевать момент образования толстой «шубы» из пыли.

Можно придерживаться этих рекомендаций для выбора системы охлаждения:

- Если в планах не стоит разгон процессора, то стоит посмотреть в сторону бюджетных кулеров. Еще проще покупать процессор в комплектации “BOX”

- Если требуется более производительная система, к примеру, для игр, то стоит выбирать кулер, состоящий из медного радиатора, тепловых трубок и малошумного вентилятора

- Для самого лучшего охлаждения могут служить массивные и дорогие кулеры, либо системы водяного охлаждения, которые требуют навыков в установке и эксплуатации.

Так же стоит обращать внимание на производителя. Самые популярные — Noctua, ArcticCooling, Zalman, Thermaltake, Xilence, CoolerMaster, Scythe.

Существует еще иммерсионное охлаждение, попросту говоря жидкостное. Представляет собой погружение серверов (и вообще всей электроники) в жидкость. Так как сейчас, в большинстве случаев, все пользуются воздушным охлаждением, требуется много вентиляторов, что приводит к большому уровню шума и высокому энергопотреблению. Непосредственное охлаждение методом погружения − новая технология, способная произвести революцию в отрасли дата-центров, но эта она требует компромиссов. Жидкость – отличная охлаждающая среда, потому что она гораздо плотнее воздуха, а плотные носители в целом облегчают изменения тепловой энергии. Циркулирующая в датацентрах чиллерная вода была одним из основных хладоносителей в теплообменниках на протяжении долгого времени. Но воду и электричество нельзя смешивать. Вода проводит электрический ток и вызывает коррозию. Нарушения в водяном контуре может иметь разрушительные последствия для систем и сооружений. Эти доводы тормозят развитие водного охлаждения в дата-центрах большинства провайдеров. Новый метод заключается в выборе других жидкостей для системы охлаждения. Обычная вода заменяется на другое вещество, непроводящее ток и неагрессивное к покрытиям, например, минеральное масло или различные смеси. Выбранный состав позволяет напрямую погрузить систему для более эффективного охлаждения без повреждения компонентов или изменения электромагнитных характеристик чувствительных электронных схем.

Есть два вида погружения: простое и двухфазное.

При простом погружение система полностью погружается в жидкость. Тепло от компонентов поглощается жидкостью, которая циркулируется чиллером или другим теплообменником, и поддерживает температуру на нужном уровне.

Классификация серверов по выполняемым задачам - student2.ru

Рисунок 1. Схема работы чиллера.

Двухэтапный подход к жидкостному охлаждению используется в таких системах, как Immersion-2 от компании AlliedControl. Серверы и другое оборудование находятся в наполненной ванне. Выбранная этим производителем жидкость, неагрессивная и не проводящая ток, имеет гораздо более низкий температурный порог для кипения - обычно близкий к 49’C по Цельсию (около 120’ по Фаренгейту). Тепло от серверного процессора и других компонентов заставляет жидкость кипеть. Температура снижается, когда появившийся пар конденсируется вокруг охлажденной катушки или другого конденсатора для сбора и повторного использования жидкости. Предполагаемое преимущество двухфазного охлаждения – высокая эффективность. Хладагент не нужно подкачивать дополнительно, поскольку циркуляция идет пассивно. Это означает, что не требуется насос для перемещения массы охлаждающей жидкости, которая остается в защищенном резервуаре. Пар конденсируется на локальном конденсаторе. Необходимый уровень температуры в конденсаторе поддерживается с помощью обычной охлажденной воды. Для поддержки такой системы нужно гораздо меньше энергии, чем в других конструкциях, а цикл с фазами трансформации жидкости-пар-жидкость перерабатывает огромное количество тепла.

Погружное жидкостное охлаждение гарантирует ряд важных преиму-ществ для ЦОДов следующего поколения:

- возможность наращивания плотность серверов

- длительный цикл процесса охлаждения

- снижение затрат на электроэнергию

Погружное жидкостное охлаждение также имеет ряд недостатков:

- неоправданный финансовый вклад

- не востребованность из-за отличного воздушного охлаждения

- угрозы протечек и загрязнения

- проблемы с обслуживанием и утилизацией

- невозможность использования дисковых накопителей в жидкости

- изменение показателя преломления в оптических интерфейсах

Специальная часть

Выбор компонентов

Одним из важнейших аспектов в установке сетевого сервера является облегчение доступа к данным с нескольких компьютеров. Например, если имеется коллекция музыкальных файлов, и есть потребность в прослушивании музыки из коллекции на телевизоре в гостиной комнате, то лучше всего хранить музыку централизованно и прослушивать её по сети. Конечно, можно хранить любую коллекцию файлов на сервере без необходимости копировать многократно ваши данные на несколько систем. Если файловый сервер настроен для использования дискового массива RAID 5 или RAID 6, то он сможет выдержать выход из строя одного жёсткого диска (или даже двух в случае RAID 6) без потери данных - в отличие от информации, хранящейся на единственном жёстком диске настольного ПК. Существует много различных типов файловых серверов и хранилищ. Самый простой способ хранения данных вне ПК заключается в использовании внешнего жёсткого диска, который стоит дёшево, работает быстро, а также обеспечивает гибкие возможности подключения. Если данные умещаются на одном жёстком диске, то такой способ будет самым недорогим для резервирования файлов. Внешние жёсткие диски доступны с разными интерфейсами. Наиболее распространён интерфейс USB 2.0, однако в последнее время стали широко использоваться с интерфейсом USB 3.0. Ещё один популярный интерфейс - FireWire. Существуют две скорости FireWire: 400 и 800 Мбит/с. Большинство внешних дисков, поддерживающих FireWire, оснащено интерфейсом со скоростью 400 Мбит/с. На практике он оказывается даже быстрее USB. Но, к сожалению, этот интерфейс проигрывает USB по универсальности. Самым современным (и быстрым) интерфейсом для внешних накопителей является eSATA. Он работает на скорости 3 Гбит/с и соответствует при этом производительности внутренних портов SATA; сегодня этот интерфейс даёт большую пропускную способность, чем способен дать любой механический жёсткий диск.

Все эти интерфейсы, благодаря которым накопитель подключается напрямую к компьютеру, являются примером сценария напрямую подключённых хранилищ (direct-attached storage, DAS). Сильные стороны DAS кроются в простоте, производительности и цене. С другой стороны, если основной компьютер выключен, вы не сможете получить доступ к файлам, расположенным на таком хранилище. Ещё одно ограничение следует из прямого подключения к основному компьютеру. Как правило, только этот компьютер сможет обратиться к хранящимся файлам, а если вы попытаетесь предоставить накопитель в общий доступ по сети, то при обращении клиентов к файлам на DAS производительность основного компьютера будет снижаться. Ограничения напрямую подключённых хранилищ DAS можно обойти, если не подключать хранилище к компьютеру вообще, использовав для этой цели сеть - мы переходим к сетевым хранилищам (network-attached storage, NAS). Если хранилище NAS включено, то вы сможете получить к нему доступ с любого компьютера в сети. Скорее всего, вы будете подключать хранилище через гигабитный сетевой порт (GigabitEthernet), которого будет достаточно по скорости для большинства пользователей. Если гигабитного сетевого порта недостаточно, то для ваших задач наверняка потребуется high-end устройство с множеством гигабитных портов, ёмким хранилищем и поддержкой функции объединения портов (teaming). Хранилища DAS и NAS часто содержат несколько жёстких дисков. Некоторые оснастки позволяют устанавливать пару винчестеров, а некоторые даже ещё больше. Оснастка может поддерживать массивы RAID 0 (чередование, увеличение скорости по сравнению с одним жёстким диском), RAID 1 (зеркалирование, защита от сбоя одного жёсткого диска) или RAID 5 (чередование с избыточностью, увеличивает скорость и защищает от сбоя одного жёсткого диска). Некоторые high-end хранилища могут даже поддерживать массивы RAID 6, которые аналогичны RAID 5, но могут выдерживать выход из строя двух жёстких дисков. Впрочем, у упомянутых оснасток RAID есть свои ограничения. Стоят они недёшево. Например, хранилище Qnap TS-509 Pro обойдётся в $800 (от 32 тыс. рублей в России) без жёстких дисков, хотя оно поддерживает массивы RAID 5 и 6. С подобной системой, как и с большинством предварительно сконфигурированных хранилищ, вам придётся использовать предварительно установленное рабочее окружение, которое может быть не таким гибким, как предпочитаемое вами программное обеспечение. Наконец, если некоторые розничные хранилища NAS поддерживают расширение, большинство моделей ограничено одним портом eSATA или парой портов USB.

Сборка файлового сервера ничем не отличается от обычного компьютера - точно так же поступают энтузиасты, которые сами собирают свои системы, а не покупают собранные системные блоки в магазине. Конечно, при сборке файлового сервера придётся принять немало решений, среди которых:

- какой объём данных планируется хранить;

- какая избыточность потребуется;

- сколько жёстких дисков планируется использовать.

Если планируется хранить большие объёмы информации, то рекомендуется минимизировать цену одного гигабайта вместо покупки самых ёмких доступных жёстких дисков. Сегодня минимальная стоимость гигабайта наблюдается у жёстких дисков ёмкостью 1,5 Тбайт. Также, если планируется использовать больше восьми или десяти жёстких дисков, то лучше собрать несколько массивов RAID 5 на четырёх или пяти винчестерах каждый, либо использовать массивы RAID 6, чтобы защититься от сбоя более одного жёсткого диска.

Корпус

Потребуется достаточно крупный корпус, чтобы вместить все жёсткие диски. Впрочем, если уже куплен слишком маленький корпус, никто не мешает позднее перенести систему в более крупную модель.

Корпус должен обеспечивать достаточное охлаждение жёстких дисков. В принципе, сегодня можно купить разнообразные модели корпусов, удовлетворяющие этому условию. Для первого файлового сервера потребуется простой корпус. С использованием 120-мм вентилятора для охлаждения жёстких дисков спереди, а также предусмотрением 120-мм вытяжного вентилятора сзади.

Сетевые интерфейсы

Для файлового сервера не помешает гигабитный сетевой интерфейс, который ускорит сетевые операции. Не помешает и поддержка jumbo-кадров, если Ethernet-коммутатор и сетевой адаптер будут с ними работать (большинство новых устройств их поддерживают). Изначально протокол Ethernet предусматривал максимальный размер кадра 1500 байт. Этого было достаточно, когда скорость сети составляла 10 Мбит/с. Когда была представлена гигабитная скорость вместе со стандартом GigabitEthernet, служебная информация, связанная с пакетами небольшого размера, стала весьма существенной. Поэтому индустрия дефакто согласилась поддерживать пакеты большего размера - был выбран размер 9000 байт. То есть вы можете передавать такое же количество данных, что и с пакетами стандартного размера, но число пакетов будет в шесть раз меньше, то же самое касается и объёма служебной информации. На практике можно экономить вычислительные ресурсы CPU и повышать пропускную способность с помощью таких jumbo-кадров, если производительность сети является ограничивающим фактором при передаче файлов. Если же ваш коммутатор не поддерживает jumbo-кадры, то пакеты проходить не будут, поэтому данную функцию придётся отключить.

С другой стороны, можно купить 8-портовыый коммутатор примерно за $40. Большинство современных материнских плат оснащены поддержкой GigabitEthernet "на борту", но если материнская плата не поддерживает гигабитную сеть, то лучше купить сетевую карту PCI-X или PCI Express (PCIe) вместо 32-битной карты PCI.

Блок питания

Внутренние компоненты должны достаточно хорошо охлаждаться. Чем меньше тепла будет создаваться внутри, тем меньше придётся выбрасывать наружу. Поэтому лучше взять экономичные жёсткие диски, которые потребляют меньше энергии, чем стандартные модели. То же самое касается и процессоров - экономичные CPU могут снизить энергопотребление и тепловыделение системы. Рекомендуется взять оба варианта.

Кроме того, лучше всего выбрать эффективный блок питания, соответствующий стандарту "80 PLUS". На рынке присутствуют блоки питания стандартов 80+ Bronze (82%) и 80+ Silver (85%) с разумной ценой. Кроме того, важно правильно подобрать мощность блока питания.

Жёсткие диски потребляют больше всего энергии во время раскручивания пластин. Хороший контроллер жёстких дисков использует отложенный запуск пластин, чтобы минимизировать этот эффект. На данный момент мне не встречались контроллеры, интегрированные в чипсет, которые бы поддерживали эту функцию.

Память

Часто, при самостоятельной сборке, энтузиасты не очень много времени уделяют надёжности работы памяти. Больше интерес проявляют к тактовой частоте и задержке, которые менее важны, чем надёжность. Когда данные поступают в файловый сервер или передаются на клиентские компьютеры, они сначала сохраняются в оперативной памяти. И данные на диске кэшируются тоже в памяти. Лучшие готовые файловые серверы используют память с коррекцией ошибок (errorcorrectingcode, ECC), а самые дешёвые построены на обычной памяти. На мой взгляд, вряд ли имеет смысл собирать высокопроизводительный файловый сервер, и при этом не использовать память ECC. Память вряд ли можно считать источником постоянных ошибок, но время от времени случайные ошибки могут происходить. По оценкам IBM, у 1 Гбайт памяти случайная ошибка происходит раз в неделю. Причиной подобных ошибок являются альфа-частицы в упаковке памяти и космические лучи. Однако у памяти ECC существует дополнительный механизм, который определяет и исправляет ошибки памяти. Стандартная память ECC может определять все 2-битовые ошибки в 64 битах памяти и исправлять 1-битовые ошибки. Есть контроллеры ECC и более высокого класса, например, которые IBM предлагает с памятью Chipkill. Ошибки в областях памяти, которые будут перезаписаны перед чтением, либо в неиспользуемых областях памяти проблем не вызывают, но ошибка памяти, которая каким-либо образом скажется на обработке данных, это уже плохо. Серьёзные серверные материнские платы, например, модели от Tyan и Supermicro, способны фиксировать ошибки памяти в журнале. Менее дорогие материнские платы, такие как Asus CUR-DLS и Asus NCCH-DL, поддерживают память ECC, но не журналируют ошибки памяти.

Существуют чипсеты, которые не поддерживают память ECC вообще, и материнские платы на этих чипсетах тоже не будут поддерживать память ECC. Рекомендуется использовать только материнские платы с поддержкой ECC и устанавливать в них память ECC.

Шины

Большинство старых материнских плат поддерживают 32-битные слоты PCI, которые подключены к общей шине и совместно используют доступную пропускную способность. Если взглянуть на диаграмму чипсета этих материнских плат, то контроллер Ethernet, контроллеры IDE и SATA - все они подключены к шине PCI. Если сложить пропускную способность дисков и Ethernet, то мы упрёмся в теоретическое ограничение 133 Мбайт/с. Работать система, конечно, будет, но всё это приведёт к замедлению файлового сервера.

Существует большое количество старых серверных материнских плат, которые оснащены слотами PCI-X (не путать с PCI Express). Эти слоты более интересны, поскольку они используют шину, которая отделена от 32-битной шины PCI. Если вы установите контроллеры жёстких дисков в слоты PCI-X, то пропускной способности ввода/вывода ничего мешать не будет. Если платформа поддерживает PCI Express, то слоты с количеством линий больше одной окажутся достаточными для домашнего файлового сервера, да и пропускная способность 266 Мбайт/с довольно хороша. Есть ещё одно потенциальное "узкое место", которое нужно учитывать: соединение между южным и северным мостом на материнской плате. Хотя Asus NCCH-DL оснащена 64-битными 66-МГц слотами PCI-X, связь между мостами осуществляется со скоростью всего 266 Мбайт/с. В теории это должно ограничивать пропускную способность ввода/вывода. К счастью, на практике проблемы с этим возникают редко, да и новые чипсеты обычно поддерживают более высокие скорости интерфейса между мостами.

Контроллер

Многие современные материнские платы оснащаются шестью портами SATA 3 Гбит/с. У старых моделей может быть меньше портов, да и они могут использовать менее скоростной стандарт SATA 1,5 Гбит/с. Так что высока вероятность, что придётся докупать в систему карту контроллера. На рынке можно найти разнообразные карты контролеров с разными интерфейсами. Что касается новых систем, то наиболее популярны карты с интерфейсом PCI Express. Данный интерфейс обеспечивает значительную пропускную способность, а старый интерфейс PCI-X даёт достаточную пропускную способность для старых систем. Для менее дорогих систем можно использовать 32-битную шину PCI, хотя она будет ограничивать производительность.

Существуют обычные карты-контроллеры накопителей (hostbusadapters) и RAID-контроллеры. Если использовать терминологию Linux, то карты RAID можно разделить на две группы: FakeRAID и настоящий RAID. Если карта выполняет вычисления информации избыточности XOR самостоятельно, то её можно считать настоящим RAID-контроллером. Иначе она будет использовать CPU для этих вычислений и программные драйверы.

Жесткие диски

Рекомендуются жёсткие диски SATA. На данный момент они доступны в больших ёмкостях, да и стоят весьма доступно. Архитектура SATA относится к ти-пу "точка-точка", то есть пропускную способность интерфейса с другими устройствами делить не придётся. Файловый сервер на жёстких дисках с параллельным интерфейсом ATA (PATA), к каждому каналу подключено два винчестера. Но если один жёсткий диск выйдет из строя, то контроллер, скорее всего, запишет в сбойные диски оба винчестера на канале и повиснет. Если купить приличный RAID-контроллер PATA, то он наверняка будет поддерживать по одному жёсткому диску на канал, чтобы предотвратить эту проблему. Конечно, в случае PATA придётся смириться с множеством кабелей.

Это одна из причин, почему индустрия перешла на интерфейс SATA.

Процессор

Для сервера потребуется суперскоростной CPU. Но хорошей идеей можно считать установку более одного процессора. Один CPU будет нагружен расчётом информации избыточности (необходима для RAID 5), а если же вы выбрали RAID 6, то процессору придётся выполнять ещё больше расчётов, на что потребуется больше ресурсов CPU.

Бесперебойное пита

Наши рекомендации