Структурированные типы данных. Представление в памяти ЭВМ массивов, структур, битовых полей и т.д.

Массив - это пронумерованная последовательность величин одинакового типа, обозначаемая одним именем. Элементы массива располагаются в последовательных ячейках памяти, обозначаются именем массива и индексом. Каждое из значений, составляющих массив, называется его компонентой (или элементом массива).

Массив данных в программе рассматривается как переменная структурированного типа. Массиву присваивается имя, посредством которого можно ссылаться как на массив данных в целом, так и на любую из его компонент.

Структуры, как и массив, образуется из отдельных компонентов, но, в отличие от массива, типы входящих в запись данных могут быть различны. Компоненты записи имеют специальное название - поля. Доступ к полям осуществляется по имени.

Метод использования битовых полей для доступа к битам основан на структурах. Битовое поле, на самом деле, - это просто особый тип структуры, определяющей, какую длину имеет каждый член. Стандартный вид объявления битовых полей следующий:

struct имя структуры {

тип имя1: длина;

тип имя2: длина;

...

тип имяN: длина;

}

Битовые поля должны объявляться как int, unsigned или signed. Битовые поля длиной 1 должны объявляться как unsigned, поскольку 1 бит не может иметь знака. Битовые поля могут иметь длину от 1 до16 бит для 16-битных сред и от 1 до 32 бит для 32-битных сред. В Borland С++ самый левый бит является знаковым.

3)Классы в С++.

Класс — разновидность абстрактного типа данных в объектно-ориентированном программировании (ООП), характеризуемый способом своего построения

Класс позволяет вашим программам группировать данные и функции которые выполняют операции над этими данными. Большинство книг и статей об объектно-ориентированном программировании называют функции класса методами. Подобно структуре, класс C++ должен иметь уникальное имя, за которым следует открывающая фигурная скобка, один или несколько элементов и закрывающая фигурная скобка:

class class_name

{
int data_member; // Элемент данных
void show_member(int); // Функция-элемент
};

После определения класса вы можете объявлять переменные типа этого класса (называемые объектами), как показано ниже:

class_name object_one, object_two, object_three;

Следующее определение создает класс employee, который содержит определения данных и метода:

class employee

{
public:
char name[64] ;
long employee_id;
float salary;
void show_employee(void)

{
cout << "Имя: " << name << endl;
cout << "Номер служащего: " << employee_id << endl;
cout << "Оклад: " << salary << endl;
};
};

Инкапсуляция, наследование, полиморфизм

Все языки OOP, включая С++, основаны на трёх основополагающих концепциях, называемых инкапсуляцией, полиморфизмом и наследованием. Рассмотрим эти концепции.

Инкапсуляция

Инкапсуляция (encapsulation) - это механизм, который объединяет данные и код, манипулирующий зтими данными, а также защищает и то, и другое от внешнего вмешательства или неправильного использования. В объектно-ориентированном программировании код и данные могут быть объединены вместе; в этом случае говорят, что создаётся так называемый "чёрный ящик". Когда коды и данные объединяются таким способом, создаётся объект (object). Другими словами, объект - это то, что поддерживает инкапсуляцию.

Внутри объекта коды и данные могут быть закрытыми (private). Закрытые коды или данные доступны только для других частей этого объекта. Таким образом, закрытые коды и данные недоступны для тех частей программы, которые существуют вне объекта. Если коды и данные являются открытыми, то, несмотря на то, что они заданы внутри объекта, они доступны и для других частей программы. Характерной является ситуация, когда открытая часть объекта используется для того, чтобы обеспечить контролируемый интерфейс закрытых элементов объекта.

На самом деле объект является переменной определённого пользователем типа. Может показаться странным, что объект, который объединяет коды и данные, можно рассматривать как переменную. Однако применительно к объектно-ориентированному программированию это именно так. Каждый элемент данных такого типа является составной переменной.

Полиморфизм

Полиморфизм (polymorphism) (от греческого polymorphos) - это свойство, которое позволяет одно и то же имя использовать для решения двух или более схожих, но технически разных задач. Целью полиморфизма, применительно к объектно-ориентированному программированию, является использование одного имени для задания общих для класса действий. Выполнение каждого конкретного действия будет определяться типом данных. Например для языка Си, в котором полиморфизм поддерживается недостаточно, нахождение абсолютной величины числа требует трёх различных функций: abs(), labs() и fabs(). Эти функции подсчитывают и возвращают абсолютную величину целых, длинных целых и чисел с плавающей точкой соответственно. В С++ каждая из этих функций может быть названа abs(). Тип данных, который используется при вызове функции, определяет, какая конкретная версия функции действительно выполняется. В С++ можно использовать одно имя функции для множества различных действий. Это называется перегрузкой функций (function overloading).

В более общем смысле, концепцией полиморфизма является идея "один интерфейс, множество методов". Это означает, что можно создать общий интерфейс для группы близких по смыслу действий. Преимуществом полиморфизма является то, что он помогает мнижать сложность программ, разрешая использование того же интерфейса для задания единого класса действий. Выбор же конкретного действия, в зависимости от ситуации, возлагается на компилятор. Вам, как программисту, не нужно делать этот выбор самому. Нужно только помнить и использовать общий интерфейс. Пример из предыдущего абзаца показывает, как, имея три имени для функции определения абсолютной величины числа вместо одного, обычная задача становится более сложной, чем это действительно необходимо.

Полиморфизм может применяться также и к операторам. Фактически во всех языках программирования ограниченно применяется полиморфизм, например, в арифметических операторах. Так, в Си, символ + используется для складывания целых, длинных целых, символьных переменных и чисел с плавающей точкой. В этом случае компилятор автоматически определяет, какой тип арифметики требуется. В С++ вы можете применить эту концепцию и к другим, заданным вами, типам данных. Такой тип полиморфизма называется перегрузкой операторов (operator overloading).

Ключевым в понимании полиморфизма является то, что он позволяет вам манипулировать объектами различной степени сложности путём создания общего для них стандартного интерфейса для реализации похожих действий.

Наследовние

Наследование (inheritance) - это процесс, посредством которого один объект может приобретать свойства другого. Точнее, объект может наследовать основные свойства другого объекта и добавлять к ним черты, характерные только для него. Наследование является важным, поскольку оно позволяет поддерживать концепцию иерархии классов (hierarchical classification). Применение иерархии классов делает управляемыми большие потоки информации. Например, подумайте об описании жилого дома. Дом - это часть общего класса, называемого строением. С другой стороны, строение - это часть более общего класса - конструкции, который является частью ещё более общего класса объектов, который можно назвать созданием рук человека. В каждом случае порождённый класс наследует все, связанные с родителем, качества и добавляет к ним свои собственные определяющие характеристики. Без использования иерархии классов, для каждого объекта пришлось бы задать все характеристики, которые бы исчерпывающи его определяли. Однако при использовании наследования можно описать объект путём определения того общего класса (или классов), к которому он относится, с теми специальными чертами, которые делают объект уникальным. Наследование играет очень важную роль в OOP.

Наши рекомендации