Определение идентификатора сети и идентификатора узла
Для IP-адресов класса А идентификатором сети является первое число в IP-адресе. Для класса В идентификатором сети являются первые два числа, а для класса С – первые три числа IP-адреса. Остальные числа определяют идентификатор узла.
Как и IP-адрес, идентификатор сети состоит из четырех чисел. Поэтому, если первое число в IP-адресе, w, представляет собой идентификатор сети, то структура этого идентификатора имеет вид w.0.0.0, где три последних числа имеют нулевые значения. При этом структура идентификатора узла будет иметь вид x.y.z. Обратите внимание, что этому идентификатору не предшествует число 0.
Например, IP-адрес 172.16.53.46 является адресом класса В, поскольку w=172, то есть находится в диапазоне между 128 и 191. Таким образом, идентификатором сети будет 172.16.0.0, а идентификатором узла – 53.46 (точка в конце не ставится).
Выделение подсети
С помощью физических устройств, таких как маршрутизаторы и мосты, можно расширить сеть, добавив к ней сегменты. Кроме того, с помощью физических устройств можно разделить сеть на меньшие сегменты, чтобы повысить эффективность ее работы. Сегменты сети, разделенные маршрутизаторами, называются подсетями.
При создании подсетей необходимо разделить идентификатор сети для задания IP-адресов узлам в подсетях. Разделение идентификатора сети, используемого для связи с Интернет, для создания меньших (в зависимости от числа указанных IP-адресов) подсетей называется выделением подсети. Теперь для определения нового идентификатора каждой подсети необходимо использовать маску подсети, которая указывает, какая часть IP-адреса должна использоваться в качестве нового идентификатора данной подсети.
Определить местоположение узла в сети можно, проанализировав идентификатор сети этого узла. Совпадающие идентификаторы сети показывают, что узлы находятся в одной и той же подсети. Если идентификаторы сети различаются, значит, узлы находятся в разных подсетях, а для установления связи между ними требуется маршрутизатор.
Подсети
Большинство сетей Windows основано на технологии Ethernet, в которой компьютеры для передачи информации используют широковещательную рассылку. По мере увеличения количества компьютеров и объема трафика в сети Ethernet, учащаются случаи конфликтов на уровне данных, и падает быстродействие сети. Для решения этой проблемы компьютеры в сети Ethernet объединяются в логические группы, называемые сегментами, которые разделены между собой физическими устройствами, такими как маршрутизаторы и мосты.
В среде TCP/IP сегменты, разделенные маршрутизаторами, называются подсетями. Все компьютеры, принадлежащие одной подсети, имеют один и тот же идентификатор сети в IP-адресе. Для связи с другими подсетями каждая подсеть должна иметь уникальный идентификатор сети. Идентификаторы подсетей определяют логическое разбиение сети. Связь между компьютерами, находящимися в разных подсетях, осуществляется через маршрутизаторы.
Маски подсети
В поклассовом методе число сетей и узлов, доступных для конкретного класса адреса, определено заранее. Таким образом, у организации, которой назначен идентификатор сети, имеется единственный постоянный идентификатор сети и определенное число узлов, ограниченное классом IP-адреса.
Используя единственный идентификатор сети, организация может иметь только одну сеть с назначенным числом узлов. Если число узлов велико, одна сеть не обеспечит высокой производительности. Для решения этой проблемы была разработана технология выделения подсетей.
Эта технология позволяет разбить один классовый идентификатор сети для создания меньших подсетей. При помощи нескольких идентификаторов сети, полученных в результате этой операции, единая сеть может быть сегментирована на подсети, каждая со своим идентификатором сети, который также называется идентификатором подсети.
Структура масок подсети
Для разделения идентификатора сети используется маска подсети. Маска подсети – это шаблон, который позволяет отличить идентификатор сети от идентификатора узла в IP-адресе. Маска подсети не ограничена правилами, применяемыми в поклассовом методе. Как и IP-адрес, маска подсети представляет собой набор из четырех чисел. Эти числа должны находиться в диапазоне от 0 до 255.
В поклассовом методе каждое из этих чисел может принимать только максимальное значение 255 или минимальное значение 0. при этом за максимальными значениями должны следовать минимальные. Максимальные значения представляют идентификатор сети, а минимальные – идентификатор узла. Например, 255.255.0.0 является допустимой маской подсети, а 255.0.255.0 – нет. Маска подсети 255.255.0.0 определяет идентификатор сети как первые два числа IP-адреса.
Маски подсети по умолчанию
В поклассовом методе каждый класс адреса имеет маску подсети по умолчанию. В следующей таблице приведены маски подсети по умолчанию для каждого адресного класса.
Класс IP-адреса | IP-адрес | Маска подсети | Идентификатор сети | Идентификатор узла |
А | w.x.y.z | 255.0.0.0 | w.0.0.0 | x.y.z |
В | w.x.y.z | 255.255.0.0 | w.x.0.0 | y.z |
С | w.x.y.z | 255.255.255.0 | w.x.y.0 | z |
Специальные маски подсети
При разделении существующего идентификатора сети для создания дополнительных подсетей можно использовать любую из приведенных выше масок подсети с любым IP-адресом или идентификатором сети. Поэтому IP-адрес 172.16.2.200 может иметь маску подсети 255.255.255.0 и идентификатор сети 172.16.2.0, а не обязательно маску подсети 255.255.0.0 с идентификатором сети 172.16.0.0, используемую по умолчанию. Это позволяет организации разбивать существующую сеть класса В с идентификатором сети 172.16.0.0 на меньшие подсети, соответствующие конфигурации их сети.