Функциональные компоненты операционной системы автономного компьютера

Функции операционной системы автономного компьютера обычно группируются либо в соответствии с типами локальных ресурсов, которыми управляет ОС, либо в соответствии со специфическими задачами, применимыми ко всем ресурсам. Иногда такие группы функций называют подсистемами. Наиболее важными подсистемами управления ресурсами являются подсистемы управления процессами, памятью, файлами и внешними устройствами, а подсистемами, общими для всех ресурсов, являются подсистемы пользовательского интерфейса, защиты данных и администрирования.

Управление процессами

Важнейшей частью операционной системы, непосредственно влияющей на функционирование вычислительной машины, является подсистема управления процессами.
Для каждого вновь создаваемого процесса ОС генерирует системные информационные структуры, которые содержат данные о потребностях процесса в ресурсах вычислительной системы, а также о фактически выделенных ему ресурсах. Таким образом, процесс можно также определить как некоторую заявку на потребление системных ресурсов.
Чтобы процесс мог быть выполнен, операционная система должна назначить ему область оперативной памяти, в которой будут размещены коды и данные процесса, а также предоставить ему необходимое процессорное время. Кроме того, процессу может понадобиться доступ к таким ресурсам, как файлы и устройства ввода-вывода.
В мультипрограммной операционной системе одновременно может существовать несколько процессов. Часть процессов порождается по инициативе пользователей и их приложений, такие процессы обычно называют пользовательскими.Другие процессы, называемые системными, инициализируются самой операционной системой для выполнения своих функций.
Важной задачей операционной системы является защита ресурсов, выделенных данному процессу, от остальных процессов.
Одним из наиболее тщательно защищаемых ресурсов процесса являются области оперативной памяти, в которой хранятся коды и данные процесса. Совокупность всех областей оперативной памяти, выделенных операционной системой процессу, называется адресным пространством процесса.Каждый процесс работает в своем адресном пространстве, имея в виду защиту адресных пространств, реализуемую ОС. Защищаются и другие типы ресурсов, такие как файлы, внешние устройства и т. д. Операционная система может не только защищать ресурсы, выделенные одному процессу, но и организовывать их совместное использование, например разрешать доступ к некоторой области памяти нескольким процессам.
Операционная система берет на себя функции синхронизации процессов, позволяющие процессу приостанавливать свое выполнение до наступления какого-либо события в системе, например завершения операции ввода-вывода, осуществляемой по его запросу операционной системой.
Для реализации сложных программных комплексов организуется работа в виде нескольких параллельных процессов, которые периодически взаимодействуют друг с другом и обмениваются некоторыми данными. Так как операционная система защищает ресурсы процессов и не позволяет одному процессу писать в память или читать из памяти другого процесса, то для оперативного взаимодействия процессов ОС должна предоставлять особые средства, которые называют средствами межпроцессного взаимодействия.
Таким образом, подсистема управления процессами ОС выполняет следующие действия:

· распределяет процессорное время между несколькими одновременно выполняемыми в системе процессами;

· занимается созданием и уничтожением процессов;

· обеспечивает процессы необходимыми системными ресурсами;

· поддерживает синхронизацию процессов;

· реализует взаимодействие между процессами.

Управление памятью

Способность ОС к «экранированию» сложностей реальной аппаратуры очень ярко проявляется в одной из основных подсистем ОС — файловой системе. Операционная система виртуализирует отдельный набор данных, хранящихся на внешнем накопителе, в виде файла — простой неструктурированной последовательности байтов, имеющей символьное имя. Для удобства работы с данными файлы группируются в каталоги, которые, в свою очередь, образуют группы — каталоги более высокого уровня. Пользователь может с помощью ОС выполнять над файлами и каталогами такие действия, как поиск по имени, удаление, вывод содержимого на внешнее устройство (например, на дисплей), изменение и сохранение содержимого.
Чтобы представить большое количество наборов данных, разбросанных случайным образом по цилиндрам и поверхностям дисков различных типов, в виде хорошо всем знакомой и удобной иерархической структуры файлов и каталогов, операционная система должна решить множество задач. Файловая система ОС выполняет преобразование символьных имен файлов, с которыми работает пользователь или прикладной программист, в физические адреса данных на диске, организует совместный доступ к файлам, защищает их от несанкционированного доступа.
При выполнении своих функций файловая система тесно взаимодействует с подсистемой управления внешними устройствами, которая по запросам файловой системы осуществляет передачу данных между дисками и оперативной памятью.
Подсистема управления внешними устройствами, называемая также подсистемой ввода-вывода, исполняет роль интерфейса ко всем устройствам, подключенным к компьютеру. Спектр этих устройств очень обширен. Номенклатура выпускаемых накопителей на жестких, гибких и оптических дисках, принтеров, сканеров, мониторов, плоттеров, модемов, сетевых адаптеров и более специальных устройств ввода-вывода, таких как, например, аналого-цифровые преобразователи, может насчитывать сотни моделей. Эти модели могут существенно отличаться набором и последовательностью команд, с помощью которых осуществляется обмен информацией с процессором и памятью компьютера, скоростью работы, кодировкой передаваемых данных, возможностью совместного использования и множеством других деталей.
Программа, управляющая конкретной моделью внешнего устройства и учитывающая все его особенности, обычно называется драйвером этого устройства (от английского drive — управлять, вести). Драйвер может управлять единственной моделью устройства, например принтером Deskjet 3420 компании Hewlett-Packard, или же группой устройств определенного типа, например любыми Hayes-совместимыми модемами. Для пользователя очень важно, чтобы операционная система включала как можно больше разнообразных драйверов, так как это гарантирует возможность подключения к компьютеру большого числа внешних устройств различных производителей. От наличия подходящих драйверов во многом зависит успех операционной системы на рынке (например, отсутствие многих необходимых драйверов внешних устройств было одной из причин сравнительно низкой популярности OS/2OS/2).
Созданием драйверов устройств занимаются как разработчики конкретной ОС, так и специалисты компаний, выпускающих внешние устройства. Операционная система должна поддерживать хорошо определенный интерфейс между драйверами и остальной частью ОС, чтобы разработчики из компаний-производителей устройств ввода-вывода могли поставлять вместе со своими устройствами драйверы для данной операционной системы.
Прикладные программисты могут пользоваться интерфейсом драйверов при разработке своих программ, но это не очень удобно — такой интерфейс обычно представляет собой низкоуровневые операции, обремененные большим количеством деталей. Поддержание высокоуровневого унифицированного интерфейса прикладного программирования к разнородным устройствам ввода-вывода является одной из наиболее важных задач ОС. Со времени появления ОС UnixUnix такой унифицированный интерфейс в большинстве операционных систем строится на основе концепции файлового доступа. Эта концепция заключается в том, что обмен с любым внешним устройством выглядит как обмен с файлом, имеющим имя и представляющим собой неструктурированную последовательность байтов. В качестве файла может выступать как реальный файл на диске, так и алфавитно-цифровой терминал, печатающее устройство или сетевой адаптер. Здесь мы опять имеем дело со свойством операционной системы подменять реальную аппаратуру удобными для пользователя и программиста абстракциями.



Наши рекомендации