Операции реляционной алгебры.

Объединением двух совместимых по типу отношений А и В называется отношение с тем же заголовком, как и в отношениях А и В, и с телом, состоящим из множества всех кортежей, принадлежащих А или В или обоим отношениям.

Пересечением двух совместимых по типу отношений А и В называется отношение с тем же заголовком, как и в отношениях А и В, и с телом, состоящим из множества всех кортежей, принадлежащих одновременно обоим отношениям A и B.

Вычитанием двух совместимых по типу отношений А и называется отношение с тем же заголовком, как и в отношениях А и В, и с телом, состоящим из множества всех кортежей, принадлежащих отношению A и не принадлежащих отношению B.

Декартово произведение двух отношений А и В , где А и В не имеют общих имен атрибутов, определяется как отношение с заголовком, который представляет собой сцепление двух заголовков исходных отношений А и В, и телом, состоящим из множества всех кортежей t, таких, что t представляет собой сцепление кортежа a, принадлежащего отношению А, и кортежа b, принадлежащего отношению В. А В С и Х У= Х,АУ,ВХ,ВУ,СХ,СУ.

Проекцией отношения А по атрибутам X, Y,..., Z, где каждый из атрибутов принадлежит отношению А

A [ X, Y, …, Z ] называется отношение с заголовком {X, Y,..., Z} и телом, содержащим множество всех кортежей {Х:х, Y:y,..., Z:z}, таких, для которых в отношении А значение атрибута Х равно х, атрибута Y равно y, ..., атрибута Z равно z.

Операция соединения. Пусть отношения А и В имеют заголовки {Xl, X2, ..., Xm, Y1, Y2, ..., Yn} и {Yl, Y2, ..., Yn, Zl, Z2, ..., Zp} соответственно;

Соединением отношений А и В называется отношение с заголовком {X, Y, Z} и телом, содержащим множество всех кортежей {Х:х, Y:y, Z:z}, таких, для которых в отношении А значение атрибута X равно х, а атрибута Y равно у, и в отношении В значение атрибута Y равно у, а атрибута Z равно z.

Выборка - обозначает любой скалярный оператор сравнения (=, , >, , ?, <). -выборкой из отношения A по атрибутам Х и Y (в этом порядке). A WHERE X Y называется отношение, имеющее тот же заголовок, что и отношение А, и тело, содержащее множество всех кортежей отношения А, для которых проверка условия X Y дает значение истина.

Деление. Отношения А и В имеют заголовки:

{X1, X2,..., Xm, Y1, Y2, ..., Yn} и {Y1, Y2, ..., Yn} соответственно, т.е. атрибуты Y1, Y2,..., Yn -- общие для двух отношений, и отношение A имеет дополнительные атрибуты X1, Х2, ... ,Хm, а отношение В не имеет дополнительных атрибутов.

Делением отношений А на В называется отношение с заголовком {X} и телом, содержащим множество всех кортежей {X:x}, таких что существует кортеж {Х:х, Y:y}, который принадлежит отношению A для всех кортежей {Y:y}, принадлежащих отношению В. Нестрого это можно сформулировать так: результат содержит такие X-значения из отношения А, для которых соответствующие Y-значения (из А) включают все Y-значения из отношения В.




Реляционное исчисление.

Реляционное исчисление является прикладной ветвью формального механизма исчисления предикатов первого порядка.

Базисными понятиями исчисления являются понятие переменной с определенной для нее областью допустимых значений и понятие правильно построенной формулы, опирающейся на переменные, предикаты и кванторы. В зависимости от того, что является областью определения переменной, различаются исчисление кортежей и исчисление доменов. В исчислении кортежей областями определения переменных являются отношения базы данных, т.е. допустимым значением каждой переменной является кортеж некоторого отношения. В исчислении доменов областями определения переменных являются домены, на которых определены атрибуты отношений базы данных, т.е. допустимым значением каждой переменной является значение некоторого домена.

Для определения кортежной переменной используется оператор RANGE. Например, для того, чтобы определить переменную СОТРУДНИК, областью определения которой является отношение СОТРУДНИКИ, нужно употребить конструкцию

RANGE СОТРУДНИК IS СОТРУДНИКИ

Пусть СОТР1 и СОТР2 - две кортежные переменные, определенные на отношении СОТРУДНИКИ. Тогда, WFF EXISTS СОТР2 (СОТР1.СОТР_ЗАРП > СОТР2.СОТР_ЗАРП) для текущего кортежа переменной СОТР1 принимает значение true в том и только в том случае, если во всем отношении СОТРУДНИКИ найдется кортеж (связанный с переменной СОТР2) такой, что значение его атрибута СОТР_ЗАРП удовлетворяет внутреннему условию сравнения. WFF FORALL СОТР2 (СОТР1.СОТР_ЗАРП > СОТР2.СОТР_ЗАРП) для текущего кортежа переменной СОТР1 принимает значение true в том и только в том случае, если для всех кортежей отношения СОТРУДНИКИ (связанных с переменной СОТР2) значения атрибута СОТР_ЗАРП удовлетворяют условию сравнения.

Реляционное исчисление доменов.В исчислении доменов областью определения переменных являются не отношения, а домены. Для примера сформулируем с использованием исчисления доменов запрос "Выдать номера и имена сотрудников, не получающих минимальную заработную плату" (будем считать для простоты, что мы определили доменные переменные, имена которых совпадают с именами атрибутов отношения СОТРУДНИКИ, а в случае, когда требуется несколько доменных переменных, определенных на одном домене, мы будем добавлять в конце имени цифры):

СОТР_НОМ, СОТР_ИМЯ WHERE EXISTS СОТР_ЗАРП1(СОТРУДНИКИ (СОТР_ЗАРП1) AND СОТРУДНИКИ (СОТР_НОМ, СОТР_ИМЯ, СОТР_ЗАРП) ANDСОТР_ЗАРП > СОТР_ЗАРП1)

Наши рекомендации