Кафедра «Высшая математика и статистика»

Факультет «Управления и бизнес-технологий»

Кафедра «Высшая математика и статистика»

Задача 1.

Вывод:

Количество аномальных единиц наблюдения (табл.2) равно ............., номера предприятий ............................................................................................

Задача 2. Рассчитанные выборочные показатели представлены в двух таблицах — табл.3 и табл.5. На основе этих таблиц формируется единая таблица (табл.8) значений выборочных показателей, перечисленных в условии Задачи 2.

Таблица 8

Описательные статистики выборочной совокупности

Обобщающие статистические показатели совокупности по изучаемым признакам Признаки
Среднегодовая стоимость основных производственных фондов Выпуск продукции
Средняя арифметическая ( Кафедра «Высшая математика и статистика» - student2.ru ), млн. руб.
Мода (Мо), млн. руб.
Медиана (Ме), млн. руб.
Размах вариации (R), млн. руб.
Дисперсия ( Кафедра «Высшая математика и статистика» - student2.ru )
Среднее квадратическое отклонение ( Кафедра «Высшая математика и статистика» - student2.ru ), млн. руб.
Коэффициент вариации (Vσ), %

Задача 3.

3а). Степень колеблемости признака определяется по значению коэффициента вариации Vsв соответствии с оценочной шкалой колеблемости признака:

0%<Vs Кафедра «Высшая математика и статистика» - student2.ru 40% - колеблемость незначительная;

40%< Vs Кафедра «Высшая математика и статистика» - student2.ru 60% - колеблемость средняя (умеренная);

Vs>60% - колеблемость значительная.

Вывод:

Для признака Среднегодовая стоимость основных производственных фондов показатель Vs=…………. . Так как значение показателя лежит в диапазоне ……………………….. оценочной шкалы, следовательно, колеблемость ………………………………. .

Для признака Выпуск продукции показатель Vs=………… . Так как значение показателя лежит в диапазоне ……………………….. оценочной шкалы, следовательно, колеблемость ………………………………. .

3б). Степень однородности совокупности по изучаемому признакудля нормального и близких к нормальному распределений устанавливается по значению коэффициента вариации Vs.Если Vs Кафедра «Высшая математика и статистика» - student2.ru 33%, то по данному признаку расхождения между значениями признака невелико. Если при этом единицы наблюдения относятся к одному определенному типу, то изучаемая совокупность однородна.

Вывод:

Для признака Среднегодовая стоимость основных производственных фондов показатель Кафедра «Высшая математика и статистика» - student2.ru , следовательно, по данному признаку выборочная совокупность …………………………. .

Для признака Выпуск продукции показатель Кафедра «Высшая математика и статистика» - student2.ru , следовательно, по данному признаку выборочная совокупность …………………………. .

3в). Для оценки количества попаданий индивидуальных значений признаков xi в тот или иной диапазон отклонения от средней Кафедра «Высшая математика и статистика» - student2.ru , а также для выявления структуры рассеяния значений xi по 3-м диапазонам формируется табл.9 (с конкретными числовыми значениями границ диапазонов).

Таблица 9

Распределение значений признака по диапазонам рассеяния признака относительно Кафедра «Высшая математика и статистика» - student2.ru

  Границы диапазонов, млн. руб. Количество значений xi, находящихся в диапазоне Процентное соотношение рассеяния значений xi по диапазонам, %
  Первый признак Второй признак Первый признак Второй признак Первый признак Второй признак
А
Кафедра «Высшая математика и статистика» - student2.ru [………….;………….] [………….;……….]        
Кафедра «Высшая математика и статистика» - student2.ru [………….;………….] [………….;……….]        
Кафедра «Высшая математика и статистика» - student2.ru [………….;………….] [………….;……….]        

На основе данных табл.9 структура рассеяния значений признака по трем диапазонам (графы 5 и 6) сопоставляется со структурой рассеяния по правилу «трех сигм», справедливому для нормальных и близких к нему распределений:

68,3% значений располагаются в диапазоне ( Кафедра «Высшая математика и статистика» - student2.ru ),

95,4% значений располагаются в диапазоне ( Кафедра «Высшая математика и статистика» - student2.ru ),

99,7% значений располагаются в диапазоне ( Кафедра «Высшая математика и статистика» - student2.ru ).

Если полученная в табл. 9 структура рассеяния хi по 3-м диапазонам незначительно расходится с правилом «трех сигм», можно предположить, что распределение единиц совокупности по данному признаку близко к нормальному.

Расхождение с правилом «трех сигм»может быть существенным. Например, менее 60% значений хi попадают в центральный диапазон ( Кафедра «Высшая математика и статистика» - student2.ru ) или значительно более 5% значения хi выходит за диапазон ( Кафедра «Высшая математика и статистика» - student2.ru ). В этих случаях распределение нельзя считать близким к нормальному.

Вывод:

Сравнение данных графы 5 табл.9 с правилом «трех сигм» показывает на их незначительное (существенное) расхождение, следовательно, распределение единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов можно (нельзя) считать близким к нормальному.

Сравнение данных графы 6 табл.9 с правилом «трех сигм» показывает на незначительное (существенное) расхождение, следовательно, распределение единиц совокупности по признаку Выпуск продукции можно (нельзя) считать близким к нормальному.

Задача 4. Для ответа на вопросы 4а) – 4в) необходимо воспользоваться табл.8 и сравнить величины показателей для двух признаков.

Для сравнения степени колеблемости значений изучаемых признаков, степени однородности совокупности по этим признакам, надежности их средних значений используются коэффициенты вариации Vs признаков.

Вывод:

Так как Vsдля первого признака больше (меньше), чем Vs для второго признака, то колеблемость значений первого признака больше (меньше) колеблемости значений второго признака, совокупность более однородна по первому (второму) признаку, среднее значение первого признака является более (менее) надежным, чем у второго признака.

Задача 5. Интервальный вариационный ряд распределения единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов представлен в табл.7, а его гистограмма и кумулята – на рис.2.

Возможность отнесения распределения признака «Среднегодовая стоимость основных производственных фондов» к семейству нормальных распределений устанавливается путем анализа формы гистограммы распределения. Анализируются количество вершин в гистограмме, ее асимметричность и выраженность «хвостов», т.е. частоты появления в распределении значений, выходящих за диапазон ( Кафедра «Высшая математика и статистика» - student2.ru ).

1. При анализе формы гистограммы прежде всего следует оценить распределение вариантов признака по интервалам (группам). Если на гистограмме четко прослеживаются два-три «горба» частот вариантов, это говорит о том, что значения признака концентрируются сразу в нескольких интервалах, что не соответствует нормальному закону распределения.

Если гистограмма имеет одновершинную форму, есть основания предполагать, что выборочная совокупность может иметь характер распределения, близкий к нормальному.

2. Для дальнейшего анализа формы распределения используются описательные параметры выборки – показатели центра распределения ( Кафедра «Высшая математика и статистика» - student2.ru , Mo, Me) и вариации ( Кафедра «Высшая математика и статистика» - student2.ru ). Совокупность этих показателей позволяет дать качественную оценку близости эмпирических данных к нормальной форме распределения.

Нормальное распределение является симметричным, и для него выполняются соотношения:

Кафедра «Высшая математика и статистика» - student2.ru =Mo=Me

Нарушение этих соотношений свидетельствует о наличии асимметрии распределения. Распределения с небольшой или умеренной асимметрией в большинстве случаев относятся к нормальному типу.

3. Для анализа длины «хвостов» распределения используется правило «трех сигм». Согласно этому правилу в нормальном и близким к нему распределениях крайние значения признака (близкие к хminи хmax) встречаются много реже (5-7 % всех случаев), чем лежащие в диапазоне ( Кафедра «Высшая математика и статистика» - student2.ru ). Следовательно, по проценту выхода значений признака за пределы диапазона ( Кафедра «Высшая математика и статистика» - student2.ru ) можно судить о соответствии длины «хвостов» распределения нормальному закону.

Вывод:

1.Гистограмма является одновершинной (многовершинной).

2. Распределение приблизительно симметрично (существенно асимметрично), так как параметры Кафедра «Высшая математика и статистика» - student2.ru , Mo, Me отличаются незначительно (значительно):

Кафедра «Высшая математика и статистика» - student2.ru = .............., Mo=.............., Me=..............

3. “Хвосты” распределения не очень длинны (являются длинными), т.к. согласно графе 5 табл.9…..……% вариантов лежат за пределами интервала ( Кафедра «Высшая математика и статистика» - student2.ru )=(………………;…………….) млн. руб.

Следовательно, на основании п.п. 1,2,3, можно (нельзя) сделать заключение о близости изучаемого распределения к нормальному.

II. Статистический анализ генеральной совокупности

Задача 1. Рассчитанные в табл.3 генеральные показатели представлены в табл.10.

Таблица 10

Описательные статистики генеральной совокупности

Обобщающие статистические показатели совокупности по изучаемым признакам Признаки
Среднегодовая стоимость основных производственных фондов Выпуск продукции
Стандартное отклонение Кафедра «Высшая математика и статистика» - student2.ru , млн. руб.    
Дисперсия Кафедра «Высшая математика и статистика» - student2.ru    
Асимметричность As    
Эксцесс Ek    

Для нормального распределения справедливо равенство

RN=6sN.

В условиях близости распределения единиц генеральной совокупности к нормальному это соотношение используется для прогнозной оценки размаха вариации признака в генеральной совокупности.

Ожидаемый размах вариации признаков RN:

- для первого признака RN=………...............,

- для второго признака RN =………...............

Соотношениемежду генеральной и выборочной дисперсиями:

- для первого признака Кафедра «Высшая математика и статистика» - student2.ru ……,т.е. расхождение между дисперсиями незначительное (значительное);

-для второго признака Кафедра «Высшая математика и статистика» - student2.ru ……,т.е. расхождение между дисперсиями незначительное (значительное).

Задача 2. Применение выборочного метода наблюдения связано с измерением степени достоверности статистических характеристик генеральной совокупности, полученных по результатам выборочного наблюдения. Достоверность генеральных параметров зависит от репрезентативности выборки, т.е. от того, насколько полно и адекватно представлены в выборке статистические свойства генеральной совокупности.

Как правило, статистические характеристики выборочной и генеральной совокупностей не совпадают, а отклоняются на некоторую величину ε, которую называют ошибкой выборки(ошибкой репрезентативности). Ошибка выборки – это разность между значением показателя, который был получен по выборке, и генеральным значением этого показателя. Например, разность

Кафедра «Высшая математика и статистика» - student2.ru = | Кафедра «Высшая математика и статистика» - student2.ru -Кафедра «Высшая математика и статистика» - student2.ru|

определяет ошибку репрезентативности для средней величины признака.

Так как ошибки выборки всегда случайны, вычисляют среднюю и предельную ошибки выборки.

1. Для среднего значения признака средняя ошибка выборки Кафедра «Высшая математика и статистика» - student2.ru (ее называют также стандартной ошибкой) выражает среднее квадратическое отклонение sвыборочной средней Кафедра «Высшая математика и статистика» - student2.ru от математического ожидания M[ Кафедра «Высшая математика и статистика» - student2.ru ] генеральной средней Кафедра «Высшая математика и статистика» - student2.ru.

Для изучаемых признаков средние ошибки выборки Кафедра «Высшая математика и статистика» - student2.ru даны в табл. 3:

- для признака Среднегодовая стоимость основных производственных фондов

Кафедра «Высшая математика и статистика» - student2.ru =……………….,

- для признака Выпуск продукции

Кафедра «Высшая математика и статистика» - student2.ru =………………..

2. Предельная ошибка выборки Кафедра «Высшая математика и статистика» - student2.ru определяет границы, в пределах которых лежит генеральная средняя Кафедра «Высшая математика и статистика» - student2.ru. Эти границы задают так называемый доверительный интервал генеральной средней Кафедра «Высшая математика и статистика» - student2.ru– случайную область значений, которая с вероятностью P, близкой к 1, гарантированно содержит значение генеральной средней. Эту вероятность называют доверительной вероятностью или уровнем надежности.

Для уровней надежности P=0,954; P=0,683оценки предельных ошибок выборки Кафедра «Высшая математика и статистика» - student2.ru даны в табл. 3 и табл. 4.

Для генеральной средней предельные значения и доверительные интервалы определяются выражениями:

Кафедра «Высшая математика и статистика» - student2.ru ,

Кафедра «Высшая математика и статистика» - student2.ru

Предельные ошибки выборки и ожидаемые границы для генеральных средних представлены в табл. 11.

Таблица 11

Предельные ошибки выборки и ожидаемые границы для генеральных средних

Доверительная вероятность Р Коэффи-циент доверия t Предельные ошибки выборки, млн. руб. Ожидаемые границы для средних Кафедра «Высшая математика и статистика» - student2.ru , млн. руб.
для первого признака для второго признака для первого признака для второго признака
0,683     Кафедра «Высшая математика и статистика» - student2.ru Кафедра «Высшая математика и статистика» - student2.ru
0,954     Кафедра «Высшая математика и статистика» - student2.ru Кафедра «Высшая математика и статистика» - student2.ru

Вывод:

Увеличение уровня надежности ведет к расширению (сужению) ожидаемых границ для генеральных средних.

Задача 3.Рассчитанныев табл.3значения коэффициентов асимметрии As и эксцесса Ek даны в табл.10.

1.Показатель асимметрии As оценивает смещение ряда распределения влево или вправо по отношению к оси симметрии нормального распределения.

Если асимметрия правосторонняя (As>0) то правая часть эмпирической кривой оказывается длиннее левой, т.е. имеет место неравенство Кафедра «Высшая математика и статистика» - student2.ru>Me>Mo,что означает преимущественное появление в распределении более высоких значений признака (среднее значение Кафедра «Высшая математика и статистика» - student2.ruбольше серединного Me и модальногоMo).

Если асимметрия левосторонняя (As<0), то левая часть эмпирической кривой оказывается длиннее правой и выполняется неравенство Кафедра «Высшая математика и статистика» - student2.ru<Me<Mo,означающее, что в распределении чаще встречаются более низкие значения признака (среднее значение Кафедра «Высшая математика и статистика» - student2.ruменьше серединного Me и модальногоMo).

Чем больше величина |As|, тем более асимметрично распределение. Оценочная шкала асимметрии:

|As| Кафедра «Высшая математика и статистика» - student2.ru 0,25 - асимметрия незначительная;

0,25<|As| Кафедра «Высшая математика и статистика» - student2.ru 0,5 - асимметрия заметная (умеренная);

|As|>0,5 - асимметрия существенная.

Вывод:

Для признака Среднегодовая стоимость основных производственных фондов наблюдается незначительная (заметная, существенная)левосторонняя (правосторонняя) асимметрия. Следовательно, в распределении преобладают …………………………………………………………………………………………

Для признака Выпуск продукции наблюдается незначительная (заметная, существенная)левосторонняя (правосторонняя) асимметрия. Следовательно, в распределении преобладают ……………………………………………………….

…………………………………………………………………………………………

2.Показатель эксцесса Ek характеризует крутизну кривой распределения - ее заостренность или пологость по сравнению с нормальной кривой.

Как правило, коэффициент эксцесса вычисляется только для симметричных или близких к ним распределений.

Если Ek>0, то вершина кривой распределения располагается выше вершины нормальной кривой, а форма кривой является более островершинной, чем нормальная. Это говорит о скоплении значений признака в центральной зоне ряда распределения, т.е. о преимущественном появлении в данных значений, близких к средней величине.

Если Ek<0, то вершина кривой распределения лежит ниже вершины нормальной кривой, а форма кривой более пологая по сравнению с нормальной. Это означает, что значения признака не концентрируются в центральной части ряда, а рассеяны по всему диапазону от xmaxдо xmin.

Для нормального распределения Ek=0. Чем больше абсолютная величина |Ek|, тем существеннее распределение отличается от нормального.

При незначительном отклонении Ek от нуля форма кривой эмпирического распределения незначительно отличается от формы нормального распределения.

Вывод:

1.Так как для признака Среднегодовая стоимость основных производственных фондов Ek>0(Ek<0), то кривая распределения является более островершинной (пологовершинной) по сравнению с нормальной кривой. При этом Ek незначительно (значительно) отличается от нуля (Ek=|…........|) Следовательно, по данному признаку форма кривой эмпирического распределения значительно (незначительно) отличается от формы нормального распределения.

2.Так как для признака Выпуск продукции Ek>0(Ek<0), то кривая распределения является более островершинной (пологовершинной) по сравнению с нормальной кривой. При этом Ek незначительно (значительно) отличается от нуля (Ek=|….........|) .Следовательно, по данному признаку форма кривой эмпирического распределения значительно (незначительно) отличается от формы нормального распределения.

III. Экономическая интерпретация результатов статистического исследования предприятий[2]

1. Типичны ли образующие выборку предприятия по значениям изучаемых экономических показателей?

Предприятия с резко выделяющимися значениями показателей приведены в табл.2. После их исключения из выборки оставшиеся 30 предприятий являются типичными (нетипичными) по значениям изучаемых экономических показателей.

2. Каковы наиболее характерные для предприятий значения показателей среднегодовой стоимости основных производственных фондов и выпуска продукции?

Ответ на вопрос следует из анализа данных табл.9, где приведен диапазон значений признака ( Кафедра «Высшая математика и статистика» - student2.ru ), содержащий наиболее характерные для предприятий значения показателей.

Для среднегодовой стоимости основных производственных фондов наиболее характерные значения данного показателя находятся в пределах от ...............………млн. руб. до ................…….млн. руб. и составляют ..........% от численности совокупности.

Для выпуска продукции наиболее характерные значения данного показа-теля находятся в пределах от ...............……. млн. руб. до …..................млн. руб. и составляют ...........% от численности совокупности.

3. Насколько сильны различия в экономических характеристиках предприятий выборочной совокупности? Можно ли утверждать, что выборка сформирована из предприятий с достаточно близкими значениями по каждому из показателей?

Ответы на вопросы следуют из значения коэффициента вариации (табл.8), характеризующего степень однородности совокупности (см. вывод к задаче 3б). Максимальное расхождение в значениях показателей определяется размахом вариации Rn. (табл.8).

Для среднегодовой стоимости основных производственных фондов различия в значениях показателя значительны (незначительны). Максимальное расхождение в значениях данного показателя........................млн. руб.

Для выпуска продукции различия в значениях показателя значительны (незначительны). Максимальное расхождение в значениях данного показателя........................млн. руб.

4. Какова структура предприятий выборочной совокупности по среднегодовой стоимости основных производственных фондов? Каков удельный вес предприятий с наибольшими, наименьшими и типичными значениями данного показатели? Какие именно это предприятия?

Структура предприятий представлена в табл.7 Рабочего файла.

Предприятия с наиболее типичными значениями показателя входят в интервал от .....................млн. руб. до ........................млн. руб. Их удельный вес ...........%. Это предприятия №№ ................................................................................

Предприятия с наибольшими значениями показателя входят в интервал от .....................млн. руб. до .......................млн. руб. Их удельный вес ...........%. Это предприятия №№ ................................................... ...................................................

Предприятия с наименьшими значениями показателя входят в интервал от .....................млн. руб. до ........................млн. руб. Их удельный вес ...........%. Это предприятия №№ ..............................................................................................

5. Носит ли распределение предприятий по группам закономерный характер и какие предприятия (с более высокой или более низкой стоимостью основных фондов) преобладают в совокупности?

Ответ на вопрос следует из вывода к задаче 5 и значения коэффициента асимметрии (табл.8).

Распределение предприятий на группы по среднегодовой стоимости основных производственных фондов носит закономерный характер, близкий к нормальному (незакономерный характер). В совокупности преобладают предприятия с более высокой (низкой) стоимостью основных фондов.

6. Каковы ожидаемые средние величины среднегодовой стоимости основных фондов и выпуска продукции на предприятиях корпорации в целом? Какое максимальное расхождение в значениях каждого показателя можно ожидать?

Ответ на первый вопрос следует из данных табл.11. Максимальное расхождение в значениях показателя определяется величиной размаха вариации RN.

По корпорации в целом ожидаемые с вероятностью 0,954 средние величины показателей находятся в интервалах:

для среднегодовой стоимости основных производственных фондов - от .........................млн. руб. до .........................млн. руб.;

для выпуска продукции - от ......................млн. руб. до ......................млн. руб.;

Максимальные расхождения в значениях показателей:

для среднегодовой стоимости основных производственных фондов -......................млн. руб.;

для выпуска продукции - .......................млн. руб.

ПРИЛОЖЕНИЕ

Таблица исходных данных

В процессе статистического исследования необходимо решить ряд задач.

1. Установить наличие статистической связи между факторным признаком Х и результативным признаком Y графическим методом.

2. Установить наличие корреляционной связи между признаками Х и Yметодом аналитической группировки.

3. Оценить тесноту связи признаков Х и Y на основе эмпирического корреляционного отношения η.

4. Построить однофакторную линейную регрессионную модель связи признаков Х и Y, используя инструмент Регрессия надстройкиПакет анализа, и оценить тесноту связи признаков Х и Y на основе линейного коэффициента корреляции r.

5. Определить адекватность и практическую пригодность построенной линейной регрессионной модели, оценив:

а) значимость и доверительные интервалы коэффициентов а0, а1;

б) индекс детерминации R2и его значимость;

в) точность регрессионной модели.

6. Дать экономическую интерпретацию:

а) коэффициента регрессии а1;

б) коэффициента эластичности КЭ;

в) остаточных величин εi.

7. Найти наиболее адекватное нелинейное уравнение регрессии с помощью средств инструмента Мастер диаграмм.

2. Выводы по результатам выполнения лабораторной работы[3]

Задача 1. Установление наличия статистической связи между факторным признаком Х и результативным признаком Yграфическим методом.

Статистическая связь является разновидностью стохастической (случайной) связи, при которой с изменением факторного признака X закономерным образом изменяется какой–либо из обобщающих статистических показателей распределения результативного признака Y.

Вывод:

Точечный график связи признаков (диаграмма рассеяния, полученная в ЛР-1 после удаления аномальных наблюдений) позволяет сделать вывод, что имеет (не имеет) место статистическая связь. Предположительный вид связи – линейная (нелинейная) прямая (обратная).

Задача 2.Установление наличия корреляционной связи между признаками Х и Yметодом аналитической группировки.

Корреляционная связь – важнейший частный случай стохастической статистической связи, когда под воздействием вариации факторного признака Х закономерно изменяются от группы к группе средние групповые значения Кафедра «Высшая математика и статистика» - student2.ru результативного признака Y(усредняются результативные значения Кафедра «Высшая математика и статистика» - student2.ru , полученные под воздействием фактора Кафедра «Высшая математика и статистика» - student2.ru ). Для выявления наличия корреляционной связи используется метод аналитической группировки.

Вывод:

Результаты выполнения аналитической группировки предприятий по факторному признаку Среднегодовая стоимость основных производственных фондов даны в табл. 2.2 Рабочего файла, которая показывает, что с увеличением значений факторного признака Хзакономерно (незакономерно) увеличиваются (уменьшаются) средние групповые значения результативного признака Кафедра «Высшая математика и статистика» - student2.ru . Следовательно, между признакамиХи Y………………………………................. ...

……....................................................................................................................................

Задача 3.Оценка тесноты связи признаков Х и Y на основе эмпирического корреляционного отношения.

Для анализа тесноты связи между факторным и результативным признаками рассчитывается показатель η – эмпирическое корреляционное отношение, задаваемое формулой

Кафедра «Высшая математика и статистика» - student2.ru ,

где Кафедра «Высшая математика и статистика» - student2.ru и Кафедра «Высшая математика и статистика» - student2.ru - соответственно межгрупповая и общая дисперсии результативного признака Y - Выпуск продукции (индекс х дисперсии Кафедра «Высшая математика и статистика» - student2.ru означает, что оценивается мера влияния признака Х на Y).

Для качественной оценки тесноты связи на основе показателя эмпирического корреляционного отношения служит шкала Чэддока:

Значениеη 0,1 – 0,3 0,3 – 0,5 0,5 – 0,7 0,7 – 0,9 0,9 – 0,99
Сила связи Слабая Умеренная Заметная Тесная Весьма тесная

Результаты выполненных расчетов представлены в табл. 2.4 Рабочего файла.

Вывод:

Значение коэффициента η =……………………, что в соответствии с оценочной шкалой Чэддока говорит о …………………………степени связи изучаемых признаков.

Задача 4. Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессиянадстройки Пакет анализаи оценка тесноты связи на основе линейного коэффициента корреляции r.

4.1. Построение регрессионной модели заключается в нахождении аналитического выражения связи между факторным признаком Xи результативным признаком Y.

Инструмент Регрессия на основе исходных данных (xi , yi), производит расчет параметров а0и а1 уравнения однофакторной линейной регрессии Кафедра «Высшая математика и статистика» - student2.ru , а также вычисление ряда показателей, необходимых для проверки адекватности построенного уравнения исходным (фактическим) данным.

Примечание. В результате работы инструмента Регрессия получены четыре результативные таблицы (начиная с заданной ячейки А75). Эти таблицы выводятся в Рабочий файл без нумерации, поэтому необходимо присвоить им номера табл.2.5 – табл.2.8 в соответствии с их порядком.

Вывод:

Рассчитанные в табл.2.7 (ячейки В91 и В92) коэффициенты а0иа1позволяют построить линейную регрессионную модель связи изучаемых признаков в виде уравнения Кафедра «Высшая математика и статистика» - student2.ru …………………….

4.2. В случае линейности функции связи для оценки тесноты связи признаков X и Y, устанавливаемой по построенной модели, используется линейный коэффициент корреляции r.

Значение коэффициента корреляции r приводится в табл.2.5 в ячейке В78 (термин "Множественный R").

Вывод:

Значение коэффициента корреляции r =…………… , что в соответствии с оценочной шкалой Чэддока говорит о ..….………………………. степени связи изучаемых признаков.

Задача 5. Анализ адекватности и практической пригодности построенной линейной регрессионной модели.

Анализ адекватности регрессионной модели преследует цель оценить, насколько построенная теоретическая модель взаимосвязи признаков отражает фактическую зависимость между этими признаками, и тем самым оценить практическую пригодность синтезированной модели связи.

Оценка соответствия построенной регрессионной модели исходным (фактическим) значениям признаков XиY выполняется в 4 этапа:

1) оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов для заданного уровня надежности;

2) определение практической пригодности построенной модели на основе оценок линейного коэффициента корреляции r и индекса детерминации R2;

3) проверка значимости уравнения регрессии в целом по F-критерию Фишера;

4) оценка погрешности регрессионной модели.

5.1. Оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов

Так как коэффициенты уравненияа0 , а1рассчитывались, исходя из значений признаков только для 30-ти пар (xi , yi), то полученные значения коэффициентов являются лишь приближенными оценками фактических параметров связи а0 , а1. Поэтому необходимо:

1. проверить значения коэффициентов на неслучайность (т.е. узнать, насколько они типичны для всей генеральной совокупности предприятий отрасли);

2. определить (с заданной доверительной вероятностью 0,95 и 0,683) пределы, в которых могут находиться значения а0, а1 для генеральной совокупности предприятий.

Для анализа коэффициентов а0, а1 линейного уравнения регрессии используется табл.2.7, в которой:

– значения коэффициентов а0, а1 приведены в ячейках В91 и В92 соответственно;

– рассчитанный уровень значимости коэффициентов уравнения приведен в ячейках Е91 и Е92;

– доверительные интервалы коэффициентов с уровнем надежности Р=0,95 и Р=0,683 указаны в диапазоне ячеек F91:I92.

5.1.1. Определение значимости коэффициентов уравнения

Уровень значимости – это величина α=1–Р, где Р – заданный уровень надежности (доверительная вероятность).

Режим работы инструмента Регрессия использует по умолчанию уровень надежности Р=0,95.Для этого уровня надежности уровень значимости равен α = 1 – 0,95 = 0,05.Этот уровень значимости считается заданным.

В инструменте Регрессиянадстройки Пакет анализа для каждого из коэффициентова0иа1 вычисляется уровень его значимости αр,который указан в результативной таблице (табл.2.7термин "Р-значение"). Если рассчитанный для коэффициентов а0, а1 уровень значимости αр,меньше заданного уровня значимости α= 0,05, то этот коэффициент признается неслучайным (т.е. типичным для генеральной совокупности), в противном случае – случайным.

Примечание. В случае, если признается случайным с

Наши рекомендации