Правило отклонения h0 и принятия h1
Если эмпирическое значение критерия равняется критическому значению, соответствующему р<0,05 или превышает его, то H0 отклоняется, но мы еще не можем определенно принять H1. Если эмпирическое значение критерия равняется критическому значению, соответствующему р<0,01 или превышает его, то H0 отклоняется и принимается H1.
Исключения: критерий знаков G, критерий Т Вилкоксона и критерий U Манна-Уитни. Для них устанавливаются обратные соотношения.
Для облегчения процесса принятия решения можно всякий раз вычерчивать "ось значимости".
Критические значения критерия обозначены как Q0,05 и Q0,01, эмпирическое значение критерия как Qэмп. Оно заключено в эллипс.
Вправо от критического значения Q0,01 простирается "зона значимости" - сюда попадают эмпирические значения, превышающие Q0,01 и, следовательно, безусловно значимые.
Влево от критического значения Q0,05 простирается "зона незначимости", - сюда попадают эмпирические значения Q, которые ниже Q0,05, и, следовательно, безусловно незначимы.
Мы видим, что Q0,05=6; Q0,01=9; Qэмп =8
Эмпирическое значение критерия попадает в область между Q0,05 и Q0,01- Это зона "неопределенности": мы уже можем отклонить гипотезу о недостоверности различий (H0), но еще не можем принять гипотезы об их достоверности (H1).
Практически, однако, исследователь может считать достоверными уже те различия, которые не попадают в зону незначимости, заявив, что они достоверны при р<0,05, или указав точный уровень значимости полученного эмпирического значения критерия, например: р=0,02. С помощью таблиц Приложения 1 это можно сделать по отношению к критериям Н Крускала-Уоллиса, χ2, Фридмана, L Пейджа, φ* Фишера, А, Колмогорова.
Уровень статистической значимости или критические значения критериев определяются по-разному при проверке направленных и ненаправленных статистических гипотез.
При направленной статистической гипотезе используется односторонний критерий, при ненаправленной гипотезе - двусторонний критерий. Двусторонний критерий более строг, поскольку он проверяет различия в обе стороны, и поэтому то эмпирическое значение критерия, которое ранее соответствовало уровню значимости р<0,05, теперь соответствует лишь уровню р<0,10.
В данном руководстве исследователю не придется всякий раз самостоятельно решать, использует ли он односторонний или двухсторонний критерий. Таблицы критических значений критериев подобраны таким образом, что направленным гипотезам соответствует односторонний, а ненаправленным - двусторонний критерий, и приведенные значения удовлетворяют тем требованиям, которые предъявляются к каждому из них. Исследователю необходимо лишь следить за тем, чтобы его гипотезы совпадали по смыслу и по форме с гипотезами, предлагаемыми в описании каждого из критериев.
Мощность критериев
Мощность критерия - это его способность выявлять различия, если они есть. Иными словами, это его способность отклонить нулевую гипотезу об отсутствии различий, если она неверна.
Ошибка, состоящая в том, что мы приняли нулевую гипотезу, в то время как она неверна, называется ошибкой II рода.
Вероятность такой ошибки обозначается как β. Мощность критерия - это его способность не допустить ошибку II рода, поэтому:
Мощность=1—β
Мощность критерия определяется эмпирическим путем. Одни и те же задачи могут быть решены с помощью разных критериев, при этом обнаруживается, что некоторые критерии позволяют выявить различия там, где другие оказываются неспособными это сделать, или выявляют более высокий уровень значимости различий. Возникает вопрос: а зачем же тогда использовать менее мощные критерии? Дело в том, что основанием для выбора критерия может быть не только мощность, но и другие его характеристики, а именно:
а) простота;
б) более широкий диапазон использования (например, по отношению к данным, определенным по номинативной шкале, или по отношению к большим n);
в) применимость по отношению к неравным по объему выборкам;
г) большая информативность результатов.