Гиперпространственная физика 5 страница

Общепринятая физика утверждает, что этот феномен, называемый «нелокальность», который на протяжении десятилетий наблюдался в лабораторных экспериментах32, является просто сложной «квантовой реальностью», ограниченной ультракороткими расстояниями на субатомном уровне, которая не воздействует, не имеет физической возможности воздействовать на большие по размеру объекты на больших расстояниях (например, на планеты, звезды или сами галактики). Поскольку в нашем трехмерном макрокосмосе скорость света теоретически считается предельной, ничто не может оказывать измеримое воздействие на любой объект со скоростью, превышающей скорость света. При этом сейчас уже полностью подтверждено существование таинственных сигналов, на макрорасстояниях проходящих между элементарными частицами быстрее скорости света, и даже связь между фотонами. В соответствии с сегодняшним пониманием предельности скорости света, основанным на уравнениях Максвелла для электромагнитного поля, только определенные виды энергии, такие как электромагнитное излучение, могут прямо проходить большие расстояния в вакуумном пространстве.

В этой классической «эйнштейновской» физике нет гипотетической среды, «эфира», как его называли во времена Максвелла, для передачи поперечных волн электромагнитного излучения в вакууме. В гиперпространственной модели эфир появляется вновь — как реальная среда трансформации между более большими пространственными мирами и нашими размерностями — посредством того, что назвали «полем кручения» (слово torsion — «кручение» происходит от того же корня, что и слово torque — «вращающий», и означает «вращать» — to spin).

Таким образом, поле кручения является «спиновым полем» — ключевой точкой, к которой мы еще вернемся. Следовательно, торсионно-эфирное поле является не такой электромагнитной средой, какой ее понимали в XIX веке, а восприимчивым к спину, геометрическим эфирным состоянием — в соответствии с чем, гиперпространственная информация/энергия может быть обнаружена в нашем измерении через вращающиеся вихревые физические системы. Вопреки догмам общепринятой физики, большое количество экспериментов, проводившихся на протяжении более ста лет, полностью подтвердили различные аспекты этой неэлектромагнитной «среды спинового поля». Расчеты и их графические отображения, моделирующие эту теоретическую космологию сегодня, к сожалению, так же сложны и запутанны, как и все остальное в современной науке. Однако эти расчеты подкреплены огромным количеством теоретических исследований и захватывающих лабораторных экспериментов, которые секретно велись в России в течение более 50 лет — и стали доступны широкой общественности только сейчас (через Интернет), после развала империи Советов.

Хотя имеются серьезные основания, и количество их все больше увеличивается, подозревать, что гиперпространственная/торсионная модель в конечном итоге может оказаться «Теорией Всего», большинство современных физиков особенно на Западе) по-прежнему отвергают эту идею и упрямо не желают двигаться в этом направлении».

Хотя такие настроения преобладали среди физиков Запада не всегда.

Гиперпространство

Математические и физические параметры, необходимые для пропуска этой «энергии/ информации» в данную размерность пространства из потенциальной «n-размерности», первоначально были обоснованы в XIX веке в работах нескольких создателей современной математики и физики. В их числе были немецкий математик Георг Риман, шотландский физик сэр Уильям Томпсон (который за научные заслуги получил титул барона Кельвина), шотландский физик Джеймс Клерк Максвелл и английский математик сэр Уильям Роуан Гамильтон.

Риман при помощи математики посвятил научное сообщество XIX века (если не вообще все Викторианское общество) в необычную идею «гиперпространства» 10 июня 1854 г. Представляя ее в Геттингенском университете в Германии, Риман предложил первое математическое описание возможного существования «более больших, невидимых размерностей», дав ему обманчиво простое название «О гипотезах, лежащих в основаниях геометрии».

Труд Римана представлял собой критику основных положений существовавшей два тысячелетия «евклидовой геометрии» — упорядоченных прямолинейных законов «обычного» трехмерного мира. Риман же предложил четырехмерную реальность (в которой наша трехмерная реальность является только «подгруппой»), где геометрические правила радикально отличаются обычных, но также имеют внутреннюю согласованность. Более того, Риман предположил, что основные законы природы в трехмерном пространстве, три загадочные силы, известные в физике — электростатика, магнетизм и тяготение, — в четырехмерном пространстве объединяются, а в нашем трехмерном пространстве просто «выглядят иначе» из-за «смятой геометрии». В сущности, он доказывал, что тяготение, магнетизм и электричество — это одно, это — энергии, идущие из более высоких измерений,

Риман выдвигал предположение, в корне отличное от теорий Ньютона о «силах, создающих действие на расстоянии». Эти теории на протяжении более 200 лет давали объяснение «магическим» свойствам магнитного и электрического притяжения и отталкивания, искривлению траекторий движения планет и падению яблок под действием силы тяжести. В противоположность Ньютону, Риман предполагал, что эти «явные» силы являются прямым следствием прохождения объектов через трехмерную геометрию, искривленную вторжением геометрии четырехмерного пространства.

Очевидно, что Максвелл и другие «гиганты» физики XIX века (лорд Кельвин, например), как и все поколение математиков того времени (Кэли, Тейт и др.), близко к сердцу приняли идеи Римана. Выделение Максвеллом четырехмерных «кватернионов» в качестве математических операторов для урав­нений сил и описания электрического и магнитного взаимодействия ясно показывает, что он поверил в идеи Римана так же, как и его удивительные экскурсы в поэзию, в которых он воспевал воздействие «миров высоких измерений», в том числе и его размышления об их связи с глубинами человеческой души33.

В 1867 г., после десятилетий исследований фундаментальных свойств материи и пространства, Томпсон выдвинул радикально новое объяснение основных свойств твердых объектов: существо-вание «вихревых атомов». Это прямо противоречило господствовавшим в то время теориям о материи, где атомы по-прежнему рассматривались как бесконечно «малые твердые тела, как представил их [римский поэт] Лукреций и подтвердил Ньютон...». «Вихревые атомы» Томпсона — невидимые крошечные самоподдерживающиеся «водовороты» в так называемом «эфире», который, как полагал Томпсон и его современники, простирается во Вселенной как несжимаемая всепроникающая текучая среда (жидкость).

В то же время, когда Томпсон опубликовал свою революционную модель атома, Максвелл, основываясь на более ранних исследованиях «эфирной жидкости» Томпсона, далеко продвинулся по пути разработки успешной «механической» вихревой модели самого «несжимаемого эфира», в котором могли бы существовать вихревые атомы Томпсона — модель, полученную частично как результат лабораторных исследований упругих и динамических свойств твердых тел. В итоге в 1873 году Максвелл смог объединить результаты двухвековых научных исследований электричества и магнетизма во всеобъемлющую электромагнитную теорию световых колебаний, которые переносятся в пространстве этой «несжимаемой и универсальной в контексте высокой напряженности эфирной средой».

Математической основой удачного объединения Максвеллом этих двух загадочных сил в физике XIX века стали «кватернионы». Термин изобретен (принят, если быть более точным) в 40-х годах XIX века математиком сэром Уильямом Роуаном Гамильтоном для «упорядоченных пар сложных чисел». По Мильтону, сами сложные числа представляли собой не что иное, как «пары действительных чисел, которые прибавляются или умножаются в соответствии с определенными формальными правилами». В 1897 А.С. Гатауэй в труде «Кватернионы как числа четырехмерного пространства» формально расширил идею Гамильтона о кватернионах как «наборах четырех действительных чисел» до идеи четырех измерений простраиства34.

По Максвеллу, действие на расстоянии возможно в «эфире», который он определял как высокую пространственную размерность — или то, что сегодня мы называем «гиперпространство». Другими словами, отец современной земной электромагнитной физики пришел к тому же заключению, что и Хогленд в своих умозаключениях о «марсианской архитектуре» в Сидонии.

Может показаться, что к делу это имеет весьма далекое отношение, однако если прочесть соответствующие строки из поэмы Максвелла, представленной Фонду Портрета Кэли в 1887 г., становится понятно, что он знал:

«Кубические поверхности! Тройки и девятки, вокруг него соберите ваши 27 линий — печать Соломона в трех измерениях...»

Это четкое описание «Печати Соломона в трех измерениях» является прямой отсылкой к геометрическим и математическим основам печально известной «описанной тетраэдральной геометрии», увековеченной в Сидонии. Если взять базовую фигуру тетраэдра — равносторонний треугольник — и добавить второй равносторонний треугольник прямо напротив первого, а затем описать вокруг этой фигуры окружность, мы получим знакомую нам «Звезду Давида» — «Печать Соломона», о которой говорит Максвелл (рис. 2-3). В этой фигуре вершины сдвоенного треугольника соприкасаются с окружностью в полюсах под утлом 19,5°. Это напрямую связано с идентичной гиперпространственной кватернионной геометрией, физическое воздействие которой сегодня мы повторно открываем по всей Солнечной системе. И, конечно же, трехмерное изображение этой «Печати Соломона» представляет собой тетраэдр в видe двойной звезды, вписанной в сферу (рис. 2-4).

Отсылка к «двадцати семи линиям» также вполне ясно отправляет нас к двухмерному изображению двойного тетраэдра, заключенного в «гиперкуб», что является базовой двухмерной формой шестигранника (рис. 2-3).

Гиперпространственная физика 5 страница - student2.ru

Рис. 2-3. Фигура из семи и двадцати Рис. 2-4. «Печать Соломона в трех

линий, как определил Максвелл, яв- измерениях» Максвелла — двойной

ляется двухмерным отображением тетраэдр, вписанный в сферу.

трехмерного сдвоенного тетраэдра,

заключенного в гиперкуб.

Тяжелая рука Хевисайда

К несчастью для науки, после смерти Максвелла два других «математических физика» XIX века, Оливер Хевисайд и Уильям Гиббс, свели его оригинальные уравнения к четырем простым (к сожалению, неполным) выражениям. Хевисайд открыто выражал неприятие кватернионов и так никогда и не понял связи между критически скалярными (не имеющее направления измерение, например, скорость) и направленными (направленная величина, например, перемещение) компонентами, как их употреблял Максвелл для описания потенциальной энергии пустоты («яблоки и апельсины», как он называл их). Поэтому, пытаясь «упростить» оригинальную теорию Максвелла, Хевисайд устранил из нее более двадцати кватернионов.

Однажды журнал «Сайентифик Американ» назвал Оливера Хевисайда человеком, «получившим знания самостоятельно... никогда не обучавшимся в университетах... но при этом обладавшим выдающейся и непостижимой способностью получать математические результаты значительной сложности, не проходя через осознанный процесс доказательства». По другим свидетельствам, в действительности Хевисайд чувствовал, что использование Максвеллом кватернионов и описания с их помощью «потенциала» пространства было «мистическим и должно было быть удалено из теории». Радикально редактируя оригинальный труд Максвелла после его смерти, вычеркивая скалярный компонент кватернионов и удаляя гиперпространственные характеристики векторного компонента, Хевисайд это и сделал35.

Это означает, что четыре оставшихся классических «уравнения Максвелла» в том виде, в котором они появляются в каждом тексте по электричеству и физике как фундамент всей электротехники и электромагнитной теории XIX века никогда не встречались в трудах Максвелла. И все изобретения, от радио до радара, от телевидения до вычислительной техники, все науки, от химии до физики и астрофизики, которые имеют дело с процессами электромагнитного излучения, основаны на этих мнимых «уравнениях Максвелла».

На самом же деле это уравнения не Максвелла, а Хевисайда. Конечным результатом стало то, что физика потеряла свои многообещающие теоретические начала как настоящая «гиперпространствен-ная» наука более ста лет назад, а вместо этого, благодаря Хевисайду, стала заниматься весьма ограниченным подразделом сложнейшей теории электромагнитного поля.

Сильнейший удар сторонники эфирной модели получили в 1887 году, когда опыты Майкельсона-Морли убедительно доказали, что «материального эфира» не существует. Однако «благодаря» Хевисайду из внимания было упущено, что сам Максвелл никогда не верил в материальность эфира — он только делал предположение о гиперпространственном эфире, который мгновенно соединяет все во Вселенной. Главная причина путаницы, окружающей настоящую теорию Максвелла, а не то, во что ее превратил Хевисайд, кроется в математике — системе обозначений, которую, вероятно, лучше всех описал Х.Дж. Джозеф: «Алгебра кватернионов Гамильтона, в отличие от алгебры векторов Хевисайда, является не просто сокращенным способом картезианского анализа, а отельным разделом математики со своими собственными правилами и специальными теоремами. Фактически кватернион — это обобщенное, или гиперкомплексное, число».

В 1897 г. Хатауэй опубликовал работу, в которой эти гиперкомплексные числа конкретно определяются как «числа в четырехмерном пространстве». Таким образом, очевидное игнорирование современными физиками открытия сделанного Максвеллом в XIX веке — математически обоснованной четырехмерной теории, — происходит из-за недостатка знания истинной природы кватернионной алгебры Гамильтона. И за исключением случая, если вам удастся найти оригинал издания «Трактата» Максвелла 1873 года, очень сложно проверить существование «гиперпространственной» системы обозначений Максвелла, поскольку к 1892 году третье издание уже содержало «коррекцию» употребления Максвеллом «скалярных потенциалов». Такая «коррекция» удаляет из всей теории Максвелла понятие ключевого различия между четырехмерным «геометрическим потенциалом» и трехмерным «векторным полем». По этой причине многие современные физики, например, Мицуи Каку, очевидно, просто не понимают, что фактически оригинальные уравнения Максвелла были первой геометрической теорией четырехмерного поля, выраженной в специальных терминах четырехмерного пространства — на языке кватернионов.

Повторное открытие

Одной из трудностей представления «высоких измерений» является то, что люди (а ученые — тоже люди), несомненно, спросят — «ну, и где это?!». Наиболее стойким аргументом против четырехмерной геометрии Римана, Кэли, Тейта и Максвелла является то, что ни одно экспериментальное доказательство «четвертого измерения» не является достаточно убедительным. Одним из самых простых для понимания аспектов «большей размерности» было то, что существо из пространства меньшей размерности (например, плоский обитатель двухмерной страны «Флэтляндии»), вступая в наше третье измерение, должно сразу же исчезать из мира меньшей размерности (и, следовательно, тут же появляться в большей размерности, будучи геометрически искаженным). По возвращении в пространство своей размерности оно просто должно «магически» появиться вновь.

Однако, по мнению ученых, в нашем измерении люди не поворачивают однажды за угол и не проваливаются прямо в четвертое измерение Римана. Даже если такая физика математически выводима и последовательна, для «экспериментаторов» (а вся настоящая наука должна основываться на проверяемых, независимо повторяющихся экспериментах) это представлялось недоступным для проверки опытным путем, физически не доказуемым. Поэтому гиперпространство — как потенциальное решение для унификации основных законов физики — исчезает с горизонтов научной мысли до апреля 1919 года.

В это время Альберт Эйнштейн получает примечательное письмо. Его написал Теодор Калуца, малоизвестный математик из Кенигсбергского университета в Германии. В первых же строках своего письма он предложил удивительное (по крайней мере для Эйнштейна, который не был осведомлен об оригинальных кватернионных уравнениях Максвелла) решение одной из самых трудных проблем физики — унификацию его (Эйнштейна) собственной теории тяготения и теории электромагнитного излучения Максвелла путем введения пятого измерения. (Поскольку Эйнштейн, формулируя общую и частную теории уже после того, как Риман высказал свои идеи, определил время как четвертое измерение, Калуца был вынужден назвать свою дополнительную пространственную размерность пятой. На самом деле это была та же размерность, что использовалась Максвеллом и его коллегами при обозначении четырехмерных пространств более чем за 50 лет до него).

Несмотря на успех математической теории и окончательное объединение тяготения и света, вопрос «Где это?» задавался Калуце точно так же, как и Риману за 60 лет до этого, поскольку убедительного экспериментального доказательства физического существования иного измерения не имелось. У Калуцы нашелся прекрасный ответ: он предположил, что четвертое измерение каким-то образом свернулось в «кольца» очень малых размеров, «меньше, чем самый маленький атом».

В 1926 году другой малоизвестный математик, Оскар Клейн исследовал особенности применения идеи Калуцы в контексте недавно созданной атомной теории квантовой механики. Клейн специализировался на изучении загадочных полей математической топологии — многомерных поверхностей объектов. Идея квантовой механики была выдвинута Максом Планком и многими другими учеными, несогласными с ограничениями теории электромагнитного поля Максвелла, за год до того, как Клейн начал дальнейшее топологическое исследование идей Калуцы. Теория «квантовой механики» была весьма успешной (а с точки зрения «нормального» здравого смысла — странной) попыткой без помощи геометрии описать взаимодействие между «элементарными частицами», при котором через частицы происходит «обмен сил» и энергии в субатомном мире. В итоге, объединяя две теории, Клейн теоретически предсказывал, что, если новое измерение Калуцы действительно существует, оно, вероятно, свернулось до планковской длины — предположительно самого малого размера, который может существовать в этом элементарном взаимодействии. При этом размер этот составляет только около 10 «в минус тридцать третьей степени» сантиметров в поперечнике. Таким образом, главным препятствием для экспериментального подтверждения теории Калуцы-Клейна (и причины того, почему люди не могут просто «войти в четвертое измерение) было то, что расчеты квантовой механики подтвердили: единственный способ измерить такую бесконечно малую величину — произвести измерения при помощи ускорителя ядерных частиц. Имелась только одна маленькая техническая трудность: энергия, которая требовалась для этого, превышала всю суммарную мощность силовых станций Земли.

Таким образом, короткий всплеск интереса к гиперпространственной физике — обсуждение теории Калуцы-Клейна среди физиков и топологов — к 30-м годам XX века сошел на нет. Это произошло отчасти из-за того, что Клейн доказал практическую невозможность прямого экспериментального подтверждения существования дополнительного измерения, а отчасти из-за существенных изменений, широко охвативших становящийся все более и более технологическим мир большой науки.

В то время по всему миру прокатилась волна проверок теорий при помощи ускорителей ядерных частиц. Проводились исследования квантовой механики. Быстро увеличивающееся число «элементарных частиц», порожденных этим необычным математическим миром, заставило Эйнштейна относиться к этой теории как к «колдовству». Позднее, даже после принятия некоторых результатов опытов, он по-прежнему продолжал скептически относиться к тому, что это — полный ответ на вопрос, поставленный физической вселенной.

Прошло еще тридцать лет, прежде чем научный интерес к гиперпространству возродился в виде теории суперструн. В ней элементарные частицы и «поля» рассматриваются как гипер-пространственные вибрации бесконечно малых многомерных струн. Для большинства физиков, занимающихся проблемой сегодня, суперструнная гиперпространственная модель имеет огромное преимущество перед своими предшественницами. Помимо того что она фактически объединяет все известные силы Вселенной, от электромагнетизма до ядерных сил, в буквально прекрасную «окончательную» картину мира, она также в определенном смысле предсказывает общее число п-измерений, которое может сформировать: десять или двадцать шесть, в зависимости от чередования струн. Плохо только, что это тоже нельзя проверить, потому что все десять измерений скручены (в модели) в недостижимой опытным путем планковской длине.

Новейшая официальная физическая теория, развивающаяся на протяжении более полувека, максимальное приближение к «Теории Всего» — это не только гиперпространственная модель действительности, это по-прежнему другая теория, которая по причине своей фундаментальности не может быть научно проверена — в то время как гиперпространственную модель, которую можно проверить (и которая, вероятно, проверялась за Железным занавесом в течение десятилетий) систематически игнорируют Западом в течение более ста лет.

Тесла, Бирден и ДеПалма

Когда Хогленд продолжил поиск новых связей геометрии Сидонии при помощи исторической обработки гиперпространственных реальностей, он столкнулся с тем, что ряд ученых-экспериментаторов работали в том же направлении. В их авангарде были д-р Брюс ДеПалма, исследователь-физик из Массчусетского технологического института, и подполковник Томас Бирден,

инженер-атомщик и физик, который работал над оригинальной моделью Максвелла со времен службы в программах скалярного оружия армии США.

Бирден тщательно исследовал подлинники работ Максвелла и пришел к заключению, что на самом деле оригинальная теория Максвелла — это Священный Грааль физики, первая удачная обобщенная теория полей в истории науки. Бирден проделал большую детективную работу по раскрытию подлинной сути трудов Максвелла. На основании полученных результатов он сделал заключениe, что Хевисайд буквально искромсал теорию Максвелла и этим отбросил современную науку почти на сто лет назад. По Бирдену, современные физики никогда не смогут найти единый элемент, объединяющий тяготение, электричество и магнетизм (поскольку все это основывается на испорченной модели Максвелла в версии Хевисайда). Но если оригинальная модель была бы восстановлена, она могла бы помочь открыть почти безграничные источники энергии и дать человечеству доступ к таким «базовым» силам, как тяготение на квантовом уровне.

Tакая радикальная точка зрения нашла подтверждение и в его собственных научных исследованиях. Они основывались на исследованиях и опытах, которые проводили сэр Эдмунд Уиттекер и Никола Тесла в начале XX века и были позднее подтверждены опытами Ааронова-Бома36.

Тесла, которому современная цивилизация обязана открытием переменного тока, провел ряд соответствующих опытов в своей лаборатории в Колорадо Спрингс в 1899 г. Во время проведения одного из опытов он наблюдал и записал «интерферирующие скалярные волны». При помощи мощных экспериментальных радиопередатчиков, построенных на вершине горы в Колорадо, он вел передачу и прием «продольного напряжения» (в отличие от обычных электромагнитных «поперечных волн») в вакууме. Используя оборудование, сделанное им самим в соответствии с оригинальными расчетами Максвелла, он обнаружил интерференцию при «возврате» от линии проходящей грозы. Тесла назвал этот феномен «стоячей волной» и следил за ним в течение нескольких часов, пока холодный фронт двигался на запад. Эксперименты Теслы были остановлены, когда его спонсор Дж.П.Морган выяснил, что настоящая цель опытов — получение неограниченных объемов электрической энергии, «стоящей меньше затрат на ее получение». Бирден также интересовался производством энергии посредством создания «продольного напряжения» в вакууме, используя кватернионные/гиперпространственные уравнения Максвелла. Он написал несколько теоретических работ, которые были опубликованы на официальном сайте Министерства энергетики37.

Затем Бирден сосредоточился на создании реального устройства, которое могло бы брать «энергию из вакуума», и запатентовал машину («Неподвижный электромагнитный генератор»), который производит энергию буквально из ничего38.

Разумеется, получить что-то просто из ничего нельзя, и Хогленд понял, что эффект Бирдена иллюстрирует тот же «гиперпространственный» эффект, который он наблюдал при выработке тепла планетами.

Сегодня среди западных физиков остро дискутируется вопрос квантовой электромагнитной энергии нулевой точки — «энергии вакуума». Для многих из тех, кто знаком с подлинниками трудов Максвелла, Кельвина и др., это очень похоже на известный нам «эфир», только немного усовершенствованный и называющийся теперь другим именем. Описываемая для приемлемости как некий необычный квантовый эффект, эта «энергия нулевой точки» есть не что иное, как гиперпространственная физика Максвелла, только в другом ракурсе.

Таким образом, создавая «напряжение» и высвобождая его, вихревой эфир Максвелла является эквивалентом отвода энергии вакуума, который, согласно современной модели квантовой механики, имеет огромный объем этой энергии на каждый кубический дюйм пустоты. Даже небольшое высвобождение этой «потенциальной энергии деформации» в нашем трехмерном мире, или в теле, существующем в трехмерном пространстве, создает эффект, что эта энергия из ниоткуда — что-то из ничего. Другими словами, для целых поколений студентов и астрофизиков, не знакомых с первоначальными уравнениями Максвелла, такая энергия является пресловутым «перпетуум мобиле».

Этот «новый» источник энергии — в более точном контексте — вероятно, является причиной не только аномального инфракрасного избытка, отмечаемого Хоглендом у так называемых планет-гигантов нашей Солнечной системы, но и энергии, которую излучают сами звезды.

Однако как кто-то может создать «напряжение в эфире» для производства энергии или проверить эту гиперпространственную физическую теорию? Теории Максвелла и Бирдена уже проверены, хотя и не специально, вышеупомянутым доктором ДеПалма.

ДеПалма, брат известного кинорежиссера Брайана ДеПалмы, задолго до встречи с Хоглендом провел (с начала 70-х) серию новаторских «вращательных экспериментов», которые подтвердили многое из того, что Хогленд теоретически повторно откроет двадцать лет спустя. Одним из практических изобретений является «N-машина» ДеПалмы — высокоскоростной «униполярный генератор», который может извлечь определенное количество электроэнергии из «разреженного воздуха» (вакуума) без затрат на топливо...

В числе других достижений ДеПалмы — опыт, в котором он одновременно выстреливал из испытательной установки два металлических шара— один из них крутился со скоростью 27 000 об/мин, а второй не вращался вообще, и затем измерял скорость их подъема и падения. В отличие от ожидаемых согласно обычной «ньютоновской» механике результатов, крутящийся, шар вылетал выше и быстрее и падал на землю быстрее, чем некрутящийся шар, несмотря на то, что к ним обоим был приложен совершенно одинаковый момент сил.

Гиперпространственная физика 5 страница - student2.ru

Рис 2-5. Эксперимент с крутящимися шарами д-ра Брюса ДеПалмы. Металлический шар раскрученный до 27 000 оборотов в минуту, взлетал быстрее и выше, летел дальше и быстрее, чем шар, который не вращался. Это нарушает основные законы движения

Был сделан вывод, что крутящийся шар каким-то образом берет энергию еще откуда-то, и она изменяет влияние на него силы тяжести и инерции... в точности то, что, независимо от этого эксперимента, предполагал Бирден в своей модели.

В 70-х ДеПалма провел огромное количество дополнительных опытов на вращение с использованием многочисленных гироскопов. В ходе этих опытов он открыл, что гироскопы, если их раскрутить и одновременно подвергнуть механической прецессии (качание осей вращения), могут также использоваться для существенного уменьшения воздействия силы тяжести. В одном из экспериментов 276-фунтовая «силовая машина» уменьшилась в весе на шесть фунтов — т.е. потеряла около 2% , когда были включены гироскопы.

ДеПалма также открыл, что большие вращающиеся системы, даже будучи тщательно изолированными друг от друга, могут вызывать «аномальные вращательные движения» в других гироскопических системах, даже если они находятся в разных комнатах... но только, если они тоже вращаются. В результате многолетних кропотливых лабораторных опытов с разнообразными вращающимися системами ДеПалма в конце концов доказал, что все вращающиеся объекты, включая звезды и планеты, в действительности должны иметь прецессию. «Прецессия» — это стремление вращающихся объектов, таких как детский волчок, или планет, например Земли, отклонять ось своего вращения. В обычной механике прецессионное движение объясняется как происходящее под воздействием внешних сил (например, притяжение Луны вызывает небольшое вздутие экватора Земли), нарушая баланс вращения объекта.

Основываясь на своих результатах измерений вращения, полученных опытным путем, ДеПалма предсказал, что даже изолированные вращающиеся объекты будут иметь прецессию благодаря взаимодействию с другими вращающимися объектами. Они получают энергию из какого-то не магнитного, не гравитационного поля (получившего название «ОД-поле»), существование которого, по его предположению, должно было объяснять необычное «прибавление энергии» в его экспериментах с вращающимися шарами. По иронии, из-за холодной войны и строгой секретности, контролируемой КГБ, ДеПалма не было известно, что такие же наблюдения в это же время были сделаны его коллегами из России, которые назвали это «торсионным полем», основанным на таком же вращательном взаимодействии.

Наши рекомендации