Асто встречающиеся распределения дискретных случайных величин.
еорема 1.
Вероятность суммы двух несовместных событий и равна сумме их вероятностей:
Следствие 1. Если - попарно несовместные события, то вероятность их суммы равна сумме вероятностей этих событий:
Следствие 2.Вероятность суммы попарно несовместных событий , образующих полную группу, равна 1:
Следствие 3.События и несовместны и образуют полную группу событий, поэтому
еорема 2.
Вероятность суммы двух совместных событий и равна сумме вероятностей этих событий без вероятности их произведения:
еорема 3.
Вероятность произведения двух независимых событий и равна произведению их вероятностей:
Следствие.Вероятность произведения независимых событий равна произведению их вероятностей:
Условной вероятностью события , при условии, что событие уже произошло, называется число , определяемое по формуле: .
Аналогично находится условная вероятность события , при условии, что событие уже произошло.
еорема 4.
Вероятность произведения двух зависимых событий и равна произведению вероятности наступления события на условную вероятность события при условии, что событие уже произошло:
Следствие.Если события и независимы, то из теоремы 4 следует теорема 3.
Теорема 5.Вероятность произведения зависимых событий равна произведению последовательно условных вероятностей:
еорема 6.
Вероятность наступления хотя бы одного из зависимых событий равна разности между единицей и вероятностью произведения отрицаний событий :
Следствие 1.Вероятность наступления хотя бы одного из событий - независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий:
Следствие 2.Если события имеют одинаковую вероятность появления, т.е. ,то вероятность появления хотя бы одного из них равна:
Примеры решения задач.
адача 1
Покупатель может приобрести акции трех компаний: А , В и С . Надежность первой оценивается экспертами на уровне 90 %, второй – 83 % и третьей – 86 %. Чему равна вероятность того, что а) только одна компания в течение года станет банкротом; б) две компании обанкротятся; в) наступит хотя бы одно банкротство?
Решение
Рассмотрим события :
= { первая компания окажется банкротом},
={вторая компания окажется банкротом}
={ третья компания окажется банкротом}.
- противоположные события, т.е. соответствующая компания не обанкротится.
а) Обозначим событие, состоящее в том, что только одна компания в течение года станет банкротом :
.
По условию : . Тогда:
; ;
Так как события независимые, а события , , несовместные, то, применяя теорему сложения для несовместных событий и теорему умножения для независимых событий, получим :
б) Событие {две компании обанкротятся }
в) Событие {наступит хотя бы одно банкротство}.
Событие {не будет ни одного банкрота}.
Ответ: а) 0,30754 ; б) 0,04766 ; в) 0,35758 .
адача 2.
В урне 10 шаров, из которых два белые, а остальные черные. Наудачу друг за другом взято 2 шара. Найдите вероятность того, что оба шара черные.
Решение:
Рассмотрим элементарные события :
{оба шара черные}; {первый шар черный}; {второй шар черный};
Тогда: .
Вероятность того, что второй шар черный, будет зависеть от того, какого цвета первый шар. Если первый шар черный, то вероятность того, что второй шар также черного цвета, равна условной вероятности , так как после наступления события всего останется 9 шаров ,из них 7 черных. Значит,
Ответ: .
Задачи для самостоятельного решения.
адача 1.1
Консультационная фирма получила приглашение для выполнения двух работ от двух международных корпораций. Руководство фирмы оценивает вероятность получения заказа от фирмы А (событие А) равной 0,45. Также, по мнению руководителей фирмы в случае, если фирма заключит договор с компанией А, то с вероятностью в 90% компания В даст фирме консультационную работу. С какой вероятностью компания получит оба заказа?
адача 1.2
Модельер, разрабатывающий новую коллекцию одежды к весеннему сезону, создает модели в зеленой, черной и красной цветовой гамме. Вероятность того, что зеленый цвет будет в моде весной, модельер оценивает в 0,3, что черный — в 0,2, а вероятность того, что будет моден красный цвет — в 0,15. Предполагая, что цвета выбираются независимо друг от друга, оцените вероятность того, что цветовое решение коллекции будет удачным хотя бы по одному из выбранных цветов.
адача 1.3
Вероятность того, что потребитель увидит рекламу определенного продукта по каждому из 3 центральных телевизионных каналов, равна0,05. Предполагается, что эти события — независимы в совокупности. Чему равна вероятность того, что потребитель увидит рекламу: а) по всем 3 каналам; б) хотя бы по 1 из этих каналов?
адача 1.4
Торговый агент предлагает клиентам иллюстрированную книгу. Из предыдущего опыта ему известно, что в среднем 1 из 65 клиентов, которым он предлагает книгу, покупает ее. В течение некоторого промежутка времени он предложил книгу 20 клиентам. Чему равна вероятность того, что он продаст им хотя бы 1 книгу? Прокомментируйте предположения, которые вы использовали при решении задачи.
адача 1.5
В налоговом управлении работает 120 сотрудников, занимающих различные должности.
Все сотрудники | Руководители | Рядовые сотрудники | Итого |
Мужчины | |||
Женщины | |||
Итого |
На профсоюзном собрании женщины заявили о дискриминации при выдвижении на руководящие должности. Правы ли они?
адача 1.6
В фирме 550 работников, 380 из них имеют высшее образование, а 412 — среднее специальное образование, у 357 высшее и среднее специальное образование. Чему равна вероятность того, что случайно выбранный работник имеет или среднее специальное, или высшее образование, или и то и другое?
адача 1.7
Финансовый аналитик предполагает, что если норма (ставка) процента упадет за определенный период, то вероятность того, что рынок акций будет расти в это же время, равна 0,80. Аналитик также считает, что норма процента может упасть за этот же период с вероятностью 0,40. Используя полученную информацию, определите вероятность того, что рынок акций будет расти, а норма процента падать в течение обсуждаемого периода.
адача 1.8
Вероятность для компании, занимающейся строительством терминалов для аэропортов, получить контракт в стране А равна 0,4, вероятность выиграть его в стране В равна 0,3. Вероятность того, что контракты будут заключены и в стране А, и в стране В, равна 0,12. Чему равна вероятность того, что компания получит контракт хотя бы в одной стране?
адача 1.9
Город имеет 3 независимых резервных источника электроэнергии для использования в случае аварийного отключения постоянного источника электроэнергии. Вероятность того, что любой из 3 резервных источников будет доступен при отключении постоянного источника, составляет 0,8. Какова вероятность того, что не произойдет аварийное отключение электроэнергии, если выйдет из строя постоянный источник?
адача 1.10
Покупатель может приобрести акции 2 компаний А и В. Надежность 1-й оценивается экспертами на уровне 90%, а 2-й - 80%. Чему равна вероятность того, что: а) обе компании в течение года не станут банкротами; б) наступит хотя бы одно банкротство?
адача 1.11
Стандарт заполнения счетов, установленный фирмой, предполагает, что не более 5% счетов будут заполняться с ошибками. Время от времени компания проводит случайную выборку счетов для проверки правильности их заполнения. Исходя из того, что допустимый уровень ошибок - 5% и 10 счетов отобраны в случайном порядке, чему равна вероятность того, что среди них нет ошибок?
адача 1.12
На сахарном заводе один из цехов производит рафинад. Контроль качества обнаружил, что 1 из 100 кусочков сахара разбит. Если вы случайным образом извлекаете 2 кусочка сахара, чему равна вероятность того, что, по крайней мере, 1 из них будет разбит? Предполагаем независимость событий, это предположение справедливо вследствие случайности отбора.
адача 1.13
Эксперты торговой компании полагают, что покупатели, обладающие пластиковой карточкой этой компании, дающей право на скидку, с 90%-й вероятностью обратятся за покупкой определенного ассортимента товаров в ее магазины. Если это произойдет, обладатель пластиковой карточки приобретет необходимый ему товар в магазинах этой компании с вероятностью 0,8. Какова вероятность того, что из двух обладателей пластиковой карточки торговой компании только один приобретет необходимый ему товар в ее магазинах?
адача 1.14
Аудиторская фирма размещает рекламу в журнале «Коммерсант». По оценкам фирмы 60% людей, читающих журнал, являются потенциальными клиентами фирмы. Выборочный опрос читателей журнала показал также, что 85% людей, которые читают журнал, помнят о рекламе фирмы, помещенной в конце журнала. Оцените, чему равен процент людей, которые являются потенциальными клиентами фирмы и могут вспомнить ее рекламу?
адача 1.15
В городе 3 коммерческих банка, оценка надежности которых - 0,95, 0,90 и 0,85 соответственно. В связи с определением хозяйственных перспектив развития города администрацию интересуют ответы на следующие вопросы: а) какова вероятность того, что в течение года обанкротятся все 3 банка; б) что обанкротится хотя бы 1 банк?
адача 1.16
О двух акциях А и В известно, что они выпущены одной и той же отраслью. Вероятность того, что акция А поднимется завтра в цене, равна 0,2. Вероятность того, что обе акции А и В поднимутся завтра в цене, равна 0,12. Предположим, что вы знаете, что акция А поднимется в цене завтра. Чему равна вероятность того, что и акция В завтра поднимется в цене?
адача 1.17
Инвестор предполагает, что в следующем периоде вероятность роста цены акций компании Nбудет составлять 0,7, а компании М - 0,4. Вероятность того, что цены поднимутся на те и другие акции, равна 0,28. Вычислите вероятность их роста или компании N, или компании М, или обеих компаний вместе.
адача 1.18
Крупная торговая компания занимается оптовой продажей материалов для строительства и ремонта жилья и, имея список покупателей в 3 регионах, основанный на ее собственной системе кодов, рассылает им по почте каталог товаров. Менеджер компании полагает, что вероятность того, что компания не получит откликов на разосланные предложения ни из одного региона, равна 0,25. Чему в этом случае равна вероятность того, что компания получит ответ хотя бы из одного региона?
адача 1.19
Вероятность получить высокие дивиденды по акциям на первом предприятии 0,2, на втором – 0,35, а на третьем -0,15. Определить вероятность того, что акционер, имеющий акции всех предприятий, получит высокие дивиденды: а) только на одном предприятии; б) хотя бы на одном предприятии
.
адача 1.20
Вероятность того, что покупатель, собирающийся приобрести компьютер и пакет прикладных программ, приобретет только компьютер, равна 0,15, только пакет программ - 0,1. Вероятность того, что будет куплен и компьютер, и пакет программ, равна 0,05. Чему равна вероятность того, что будет куплен или компьютер, или пакет программ, или компьютер и пакет программ вместе?
2. Формула полной вероятности. Формула Байеса.
Пусть событие может наступить только одновременно с одним из попарно несовместных событий , которые образуют полную группу. Кроме того, события имеют ненулевые вероятности.
Для любого наблюдаемого в эксперименте события имеет место следующее равенство, называемое формулой полной вероятности:
или
,
где события - гипотезы, -условная вероятность наступления события при наступлении -й гипотезы ( , а безусловные вероятности трактуются как априорные (доопытные) вероятности гипотез.
Условная вероятность гипотезы , при условии того, что событие уже произошло, определяется по формуле вероятности гипотез или формуле Байеса:
где
Общая схема применения формулы Байеса следующая.
Пусть событие может происходить в различных условиях, о характере которых можно выдвинуть гипотез . Из каких-то соображений
известны вероятности этих гипотез , , и известны условные вероятности .
Предположим, что произведен опыт, в результате которого наступило событие , тогда условные вероятности гипотез (их называют апостериорными или послеопытными) будут рассчитываться по формуле Байеса.
Примеры решения задач
Задача1 .
В составе Думы представлены 3 партии (по 100, 150, 50 человек от 1-й, 2-й и 3-й партий соответственно). Кандидата на должность спикера Думы поддерживают 50% представителей первой партии, 70% - второй партии и 10% - третьей партии. Какова вероятность того, что наудачу выбранный член Думы поддерживает выдвинутую кандидатуру на должность спикера Думы?
Решение:
Рассматривается событие A={наудачу выбранный представитель думы поддерживает выдвинутую кандидатуру}
Из условий задачи очевидно, что с событием тесно связаны три гипотезы:
{выбранное лицо представляет первую партию};
{выбранное лицо представляет вторую партию};
{выбранное лицо представляет третью партию}.
Вероятности этих гипотез сразу определяются из условии задачи:
; ;
Условные вероятности события даны в условии задачи:
; ;
Вероятность события вычисляем по формуле полной вероятности:
Ответ:0,7
адача 2.
Страховая компания разделяет застрахованных по трем классам риска: 1 класс – малый риск, 2 класс – средний, 3 класс – большой риск. Среди всех клиентов компании 50% - первого класса риска, 30% - второго и 20% - третьего. Вероятность наступления страхового случая для первого класса риска равна 0.01, второго – 0.03, третьего – 0.08. Какова вероятность того, что клиент, получивший денежное вознаграждение за период страхования, относится к группе малого риска?
Решение.
Пусть событие А означает, что клиент компании получил вознаграждение. Понятно, что событие А может наступить лишь совместно с одним из трех попарно несовместных событий: - клиент относится к первому классу риска; - клиент относится ко второму классу риска; - клиент относится к третьему классу риска. Необходимо определить условную вероятность
Из условия задачи известны вероятности гипотез:
Известны также условные вероятности:
Искомую вероятность вычисляем по формуле Байеса , т.е.
Ответ:
Задачи для самостоятельного решения.
адача 2.1
Перед тем, как начать маркетинг нового товара по всей стране, компании-производители часто проверяют спрос на него по отзывам случайно выбранных потенциальных покупателей. Методы проведения выборочных процедур уже проверены и имеют определенную степень надежности. Для определенного товара известно, что вероятность его возможного успеха на рынке составит 0,75, если товар действительно удачный, и 0,15, если он неудачен. Из прошлого опыта известно, что новый товар может иметь успех на рынке с вероятностью 0,60. Если новый товар прошел выборочную проверку, и ее результаты указали на возможный его успех, то чему равна вероятность того, что это действительно так?
адача 2.2
На химическом заводе установлена система аварийной сигнализации. Когда возникает аварийная ситуация, звуковой сигнал срабатывает с вероятностью 0,970. Звуковой сигнал может сработать случайно и без аварийной ситуации с вероятностью 0,03. Реальная вероятность аварийной ситуации равна 0,005. Предположим, что звуковой сигнал сработал. Чему равна вероятность реальной аварийной ситуации?
адача 2.3
Вероятность того, что клиент банка не вернет заем в период экономического роста, равна 0,05, а в период экономического кризиса – 0,15. Предположим, что вероятность того, что начнется период экономического роста, равна 0,63. Чему равна вероятность того, что случайно выбранный клиент банка не вернет полученный кредит?
адача 2.4
Директор компании имеет 2 списка с фамилиями претендентов на работу. В 1-м списке — фамилии 6 женщин и 3 мужчин. Во 2-м списке оказались 4 женщины и 7 мужчин. Фамилия одного из претендентов случайно переносится из 1-го списка во 2-й. Затем фамилия одного из претендентов случайно выбирается из 2-го списка. Если предположить, что эта фамилия принадлежит мужчине, чему равна вероятность того, что из 1-го списка была перенесена фамилия женщины?
адача 2.5
Агент по недвижимости пытается продать участок земли под застройку. Он полагает, что участок будет продан в течение ближайших 6 месяцев с вероятностью 0,9, если экономическая ситуация в регионе не будет ухудшаться. Если же экономическая ситуация будет ухудшаться, то вероятность продать участок составит 0,5. Экономист, консультирующий агента, полагает, что с вероятностью, равной 0,7, экономическая ситуация в регионе в течение следующих 6 месяцев будет ухудшаться. Чему равна вероятность того, что участок будет продан в течение ближайших 6 месяцев?
адача 2.6
Вероятность того, что новый товар будет пользоваться спросом на рынке, если конкурент не выпустит в продажу аналогичный продукт, равна 0,67. Вероятность того, что товар будет пользоваться спросом при наличии на рынке конкурирующего товара, равна 0,42. Вероятность того, что конкурирующая фирма выпустит аналогичный товар на рынок в течение интересующего нас периода, равна 0,35. Чему равна вероятность того, что товар будет иметь успех?
адача 2.7
Экспортно-импортная фирма собирается заключить контракт на поставку сельскохозяйственного оборудования в одну из развивающихся стран. Если основной конкурент фирмы не станет одновременно претендовать на заключение контракта, то вероятность получения контракта оценивается в 0,55; в противном случае – в 0,33. По оценкам экспертов компании вероятность того, что конкурент выдвинет свои предложения по заключению контракта, равна 0,40. Чему равна вероятность заключения контракта?
адача 2.8
Для определенного товара известно, что вероятность его возможного успеха на рынке составит 0,70, если товар действительно удачный, и 0,14, если он неудачен. Из прошлого опыта известно, что новый товар может иметь успех на рынке с вероятностью 0,60. Если новый товар прошел выборочную проверку и ее результаты указали на возможный его успех, то чему равна вероятность того, что это действительно так?
адача 2.9
Экономист-аналитик условно подразделяет экономическую ситуацию в стране на «хорошую», «посредственную» и «плохую» и оценивает их вероятности для данного момента времени 0,15; 0,65 и 0,20 соответственно. Некоторый индекс экономического состояния возрастает с вероятностью 0,60, когда ситуация «хорошая»; с вероятностью 0,30, когда ситуация «посредственная», и с вероятностью 0,10, когда ситуация «плохая». Пусть в настоящий момент индекс экономического состояния возрос. Чему равна вероятность того, что экономика страны на подъеме.
адача 2.10
Исследованиями психологов установлено, что мужчины и женщины по-разному реагируют на некоторые жизненные обстоятельства. Результаты исследований показали, что 70 % женщин позитивно реагируют на изучаемый круг ситуаций, в то время как 40 % мужчин реагируют на них негативно. 15 женщин и 10 мужчин заполнили анкету, в которой отразили свое отношение к предлагаемым ситуациям. Случайно извлеченная анкета содержит негативную реакцию. Чему равна вероятность того, что ее заполнял мужчина?
адача 2.11
Судоходная компания организует средиземноморские круизы в течение летнего времени и проводит несколько круизов в сезон. Эксперт по туризму, нанятый компанией, предсказывает, что вероятность того, что корабль будет полон в течение сезона, будет равна 0,92, если доллар не подорожает по отношению к рублю, и с вероятностью – 0,70, если доллар подорожает. По оценкам экономистов, вероятность того, что в течение сезона доллар подорожает по отношению к рублю, равна 0,35. Чему равна вероятность того, что билеты на все круизы будут проданы?
адача 2.12
При слиянии акционерного капитала 2 фирм аналитики фирмы, получающей контрольный пакет акций, полагают, что сделка принесет успех с вероятностью, равной 0,65, если председатель совета директоров поглощаемой фирмы выйдет в отставку; если он откажется, то вероятность успеха будет равна 0,30. Предполагается, что вероятность ухода в отставку председателя составляет 0,70. Чему равна вероятность успеха сделки?
адача 2.13
Агент по недвижимости пытается продать участок земли под застройку. Он полагает, что участок будет продан в течение ближайших 6 месяцев с вероятностью 0,9, если экономическая ситуация в регионе не будет ухудшаться. Если же экономическая ситуация будет ухудшаться, то вероятность продать участок составит 0,5. Экономист, консультирующий агента, полагает, что с вероятностью, равной 0,7, экономическая ситуация в регионе в течение следующих 6 месяцев будет ухудшаться. Чему равна вероятность того, что участок будет продан в течение ближайших 6 месяцев?
адача 2.14
В корпорации обсуждается маркетинг нового продукта, выпускаемого на рынок. Исполнительный директор корпорации желал бы, чтобы новый товар превосходил по своим характеристикам соответствующие товары конкурирующих фирм. Основываясь на предварительных оценках экспертов, он определяет вероятность того, что новый товар более высокого качества по сравнению с аналогичными в 0,5, такого же качества - в 0,3, хуже по качеству - в 0,2. Опрос рынка показал, что новый товар конкурентоспособен. Из предыдущего опыта проведения опросов следует, что если товар действительно конкурентоспособный, то предсказание такого же вывода имеет вероятность, равную 0,7. Если товар такой же, как и аналогичные, то вероятность того, что опрос укажет на его превосходство, равна 0,4. И если товар более низкого качества, то вероятность того, что опрос укажет на его конкурентоспособность, равна 0,2. С учетом результата опроса оцените вероятность того, что товар действительно более высокого качества и, следовательно, обладает более высокой конкурентоспособностью, чем аналогичные.
адача 2.15
Сотрудники отдела маркетинга полагают, что в ближайшее время ожидается рост спроса на продукцию фирмы. Вероятность этого они оценивают в 80%. Консультационная фирма, занимающаяся прогнозом рыночной ситуации, подтвердила предположение о росте спроса. Положительные прогнозы консультационной фирмы сбываются с вероятностью 95%, а отрицательные - с вероятностью 99%. Какова вероятность того, что рост спроса действительно произойдет?
адача 2.16
Исследователь рынка заинтересован в проведении интервью с супружескими парами для выяснения их предпочтений к некоторым видам товаров. Он приходит по выбранному адресу, попадает в трехквартирный дом и по надписям на почтовых ящиках выясняет, что в 1-й квартире живут 2 мужчин, во 2-й - супружеская пара, в 3-й - 2 женщины. Когда исследователь поднимается по лестнице, то выясняется, что на дверях квартир нет никаких указателей. Исследователь звонит в случайно выбранную дверь и на его звонок выходит женщина. Предположим, что если бы он позвонил в дверь квартиры, где живут 2 мужчин, то к двери мог подойти только мужчина; если бы он позвонил в дверь квартиры, где живут только женщины, то к двери подошла бы только женщина; если бы он позвонил в дверь супружеской пары, то мужчина или женщина имели бы равные шансы подойти к двери. Имея эту информацию, оцените вероятность того, что исследователь выбрал нужную ему дверь.
адача 2.17
Отдел менеджмента одного из супермаркетов разрабатывает новую кредитную политику с целью снижения числа тех покупателей, которые, получая кредит, не выполняют своих платежных обязательств. Менеджер по кредитам предлагает в будущем отказывать в кредитной поддержке тем покупателям, которые на 2 недели и более задерживают очередной взнос, тем более что примерно 90% таких покупателей задерживают платежи, по крайней мере, на 2 месяца.
Дополнительные исследования показали, что 2% всех покупателей товаров в кредит не только задерживают очередной взнос, но и вообще не выполняют своих обязательств, а 45% тех, кто уже имеют 2-месячную задолженность по кредиту, уплатил очередной взнос в данный момент. Учитывая все это, найти вероятность того, что покупатель, имеющий 2-месячную задолженность, в действительности не выполнит своих платежных обязательств по кредиту. Проанализировав полученные вероятности, критически оцените новую кредитную политику, разработанную отделом менеджмента.
адача 2.18
Экспортно-импортная фирма собирается заключить контракт на поставку сельскохозяйственного оборудования в одну из развивающихся стран. Если основной конкурент фирмы не станет одновременно претендовать на заключение контракта, то вероятность получения контракта оценивается в 0,45; в противном случае - в 0,25. По оценкам экспертов компании вероятность того, что конкурент выдвинет свои предложения по заключению контракта, равна 0,40. Чему равна вероятность заключения контракта?
адача 2.19
Транснациональная компания обсуждает возможности инвестиций в некоторое государство с неустойчивой политической ситуацией. Менеджеры компании считают, что успех предполагаемых инвестиций зависит, в частности, и от политического климата в стране, в которую предполагается вливание инвестиционных средств. Менеджеры оценивают вероятность успеха (в терминах годового дохода от субсидий в течение 1-го года работы) в 0,55, если преобладающая политическая ситуация будет благоприятной; в 0,30, если политическая ситуация будет нейтральной; в 0,10, если политическая ситуация в течение года будет неблагоприятной. Менеджеры компании также полагают, что вероятности благоприятной, нейтральной и неблагоприятной политических ситуаций соответственно равны: 0,60, 0,20 и 0,20. Чему равна вероятность успеха инвестиций?
адача 2.20
Из числа авиалиний некоторого аэропорта 60% - местные, 30% - по СНГ и 10% - международные. Среди пассажиров местных авиалиний 50% путешествуют по делам, связанным с бизнесом, на линиях СНГ таких пассажиров 60%, на международных - 90%. Из прибывших в аэропорт пассажиров случайно выбирается 1. Чему равна вероятность того, что он: а) бизнесмен; б) прибыл из стран СНГ по делам бизнеса; в) прилетел местным рейсом по делам бизнеса; г) прибывший международным рейсом бизнесмен?
3. Повторные испытания.
3.1 Постоянные условия опыта (схема Бернулли). Проводятся опытов, в каждом из которых событие может наступить с вероятностью или не наступить с вероятность . Тогда вероятность того, что в случаях из произойдет событие вычисляется по формуле Бернулли:
3.2 Опыт с несколькими событиями.Если в результате опыта может появиться одно из несовместных событий , образующих полную группу, где , то вероятность того, что в опытах появится событие ровно раз, событие ровно раз,…., событие ровно раз, определяется по формуле:
3.3 Вероятность наступления события :
а) менее раз: .
б) более раз: .
в) не менее раз: .
г) не более раз: .
д) хотя бы один раз: .
3.4 Наивероятнейшее число наступивших событий по схеме Бернулли определяется из неравенства:
.
3.5 Локальная теорема Лапласа.При больших значениях непосредственное применение формулы Бернулли затруднительно из-за вычислительных трудностей. В этом случае применяют локальную теорему Лапласа, которая справедлива, если число испытаний достаточно велико (практически при ).
Если вероятность p появления случайного события A в каждом испытании постоянна, то вероятность появления события k раз в n испытаниях приближенно (тем точнее, чем больше n) равна:
,
где .
Для удобства вычислений по этой формуле функция табулирована (см. приложение 1)
3.6 Интегральная теорема Лапласа позволяет найти вероятность того, что событие произойдет не менее раз и не более раз. Вероятность определяется по формуле:
,
где -функция Лапласа табулирована (см. приложение 1).
3.7 Формула Пуассона.Если и , то вероятность появления события раз в испытаниях приближенно (тем точнее, чем больше ) равна:
,
где .
Примеры решения задач
адача 1.
Найти вероятность того, что событие А (переключение передач) наступит 70 раз на трассе длиной 256 км, если вероятность переключения на каждом км этой трассы равна 0,25.
ешение.
Число испытаний соответствует числу км на трассе. Так как велико, применим локальную теорему Лапласа.
По условию
Вычислим .
По таблице (см. приложение 1) находим . Тогда искомая вероятность равна
Ответ:
адача 2.
Вероятность появления события в каждом из 200 независимых испытаний постоянна и равна . Найти вероятность того, что событие появится не менее 150 раз и не более 180 раз.
ешение.
Так как велико и заданы интервалы изменения , применим интегральную теорему Лапласа.
По условию
Вычислим
Искомая вероятность равна
По таблице приложения 1 найдем:
Следовательно,
Ответ:
Задачи для самостоятельного решения.
адача 3.1
Известно, что из числа зрителей определенной телепрограммы 70% смотрят и рекламные блоки. Группы состоящие из трех наугад выбранных телезрителей, опрашивают относительно содержания рекламного блока. Сколько человек в группе вероятнее всего смотрят рекламный блок?
адача 3.2
Среди 12 проверяющих ревизором договоров семь оформлены неправильно. Найти вероятность того, что среди пяти договоров, произвольно отобранных ревизоров, окажутся неправильно оформленными не менее трех договоров.
адача 3.3
Банк имеет пять отделений. Ежедневно с вероятностью 0,3 каждое отделение, независимо от других, может заказать на следующий день крупную сумму. В конце рабочего дня один из вице-президентов банка знакомиться с поступившими заявками. Найти вероятность того, что поступили заявки из двух отделений.
адача 3.4
Владельцы кредитных карт ценят их и теряют весьма редко - вероятность потерять карту в течении недели для для случайно выбранного вкладчика равна 0,001 . Банк выдал кредитные карты 2000 клиентам. Найти вероятность того, что за неделю будет утеряна хотя бы одна кредитная карта.
адача 3.5
Один процент сто долларовых купюр составляют фальшивые, сделанные настолько искусно, что операционист обменного пункта десятую их часть принимает за настоящие. Каждый день для обмена приносят примерно 200 стодолларовых купюр (всего- настоящих и фальшивых). Определить вероятность того, что среди них есть хотя бы одна фальшивая.
адача 3.6
Строительная фирма для привлечения инвестиций для строительства нового дома собирается воспользоваться банковским кредитом. Вероятность того, что какой-либо банк в ответ на поступление бизнес-плана примет положительное решение о кредитовании фирмы, равна 0,3. Строительная фирма обратилась в 100 банков. Найти вероятность того, что решение о предоставлении кредитов этой фирме примут 15 банков.
адача 3.7
Вероятность смерти тридцатилетнего мужчины составляет 0,0006. Страховая компания заключила 10 000 страховых контрактов с мужчинами в возрасте 30 лет, согласно которым в случае смерти застрахованного лица в течении ближайшего года его наследникам выплавится 100 тыс. руб . Стоимость одного контракта равна 1 200 руб. Найти вероятность того, что к концу года страховая компания окажется в убытке.
адача 3.8
В страховом обществе на год застраховано 4000 автолюбителей. В случае аварии страховое общество выплачивает автолюбителю 800 рублей. Какую минимальную стоимость страхового взноса следует установить, чтобы вероятность того, что страховое общество к концу года окажется в убытке была не больше 0,0668, если вероятность автолюбителю попасть в аварию равна 0,004 .
адача 3.8
Вероятность смерти тридцатилетнего мужчины составляет 0,0006. Страховая компания заключила 10 000 страховых контрактов с мужчинами в возрасте 30 лет, согласно которым в случае смерти застрахованного лица в течении ближайшего года его наследникам выплавится 100 тыс. руб . Стоимость одного контракта равна 1 200 руб. Найти вероятность того, что доход страховой компании превысит 4 000 000 рублей.
адача 3.9
Численность работников предприятия составляет 500 чел. Вероятность невыхода на работу из-за болезни равна 0,01 для каждого работника предприятия. Определить вероятность того, что в ближайший день не выйдет на работу хотя бы один из работников.
адача 3.10
Вероятность того, что человек в период страхования будет травмирован, равна 0,006. Компанией застраховано 100 человек. Годовой взнос с человека составляет 150 руб. В случае получения травмы застраховавшийся получает 12 000 руб. Какова вероятность того, что выплата по страховкам превысит сумму страховых взносов?
адача 3.11
Торговый агент в среднем контактирует с восемью потенциальными покупателями в день. Из опыта ему известно, что вероятность того, что потенциальный покупатель совершит покупку, равна 0,1. Чему равна вероятность того, что у агента будут хотя бы две продажи в течение дня?
адача 3.12
Фирма предлагает в продажу со склада партию из 10 компьютеров, 4 из которых – с дефектами. Покупатель приобретает 5 из них, не зная о возможных дефектах. Чему равна вероятность того, что все 5 компьютеров окажутся без дефектов?
адача 3.13
Установлено, что виноградник поражен вредителями в среднем на 10%. Определить вероятность того, что из 10 проверенных кустов винограда один будет поражен.
адача 3.14
Известно, что 80% специалистов в районе имеет высшее образование. Найти вероятность того, что из 100 наудачу отобранных человек высшее образование имеет не менее 70 чел.
адача 3.15
В автопарке имеется 400 автомобилей. Вероятность безотказной работы каждого из них равна 0,9. С вероятность 0,95 определить границы, в которых будет находиться доля безотказно работавших машин в определенный момент времени.
адача 3.16
Товаровед осматривает 24 образца товаров. Вероятность того, что каждый из образцов будет признан годным к продаже, равна 0,6. Найти наивероятнейшее число образцов, которые товаровед признает годными к продаже.
адача 3.17
Для определения степени поражения винограда вредителями было обследовано 400 кустов. Вероятность поражения куста виноградника равна 0,03. Определить границы, в которых с вероятностью 0,9545 будет заключено число кустов, не пораженных вредителями.
адача 3.18
Численность работников предприятия составляет 500 человек. Вероятность невыхода на работу из-за болезни равна 0,03 для каждого работника предприятия. Определить вероятность того, что в ближайший день не выйдет на работу хотя бы один работник.
адача 3.19
Торговый агент в среднем контактирует с восемью потенциальными покупателями в день. Из опыта ему известно, что вероятность того, что потенциальный покупатель совершит покупку, равна 0,1. Чему равна вероятность того, что у агента в течении дня не будет продаж?
адача 3.20
Строительная фирма для привлечения инвестиций для строительства нового дома собирается воспользоваться банковским кредитом. Вероятность того, что какой-либо банк в ответ на поступление бизнес-плана примет положительное решение о кредитовании фирмы, равна 0,3. Строительная фирма обратилась в 100 банков. Найти вероятность того, что решение о предоставлении кредитов этой фирме примут 15 банков.
- Дискретные случайные величины
Величина называется дискретной случайной величиной, если ее возможные значения образуют конечную или бесконечную последовательность чисел , появление каждого из них есть случайное событие с определенной вероятностью.
Законом распределения дискретной случайной величины называется перечень ее возможных значений и соответствующих им вероятностей.
Пусть -дискретная случайная величина, которая принимает значения: с некоторой вероятностью , где .
Тогда можно говорить о вероятности того, что случайная величина приняла значение : .
Значения и соответствующие представляют в виде таблицы:
… | … | |||||
… | … |
Основное свойство таблицы заключено в том, что сумма вероятностей равна 1:
Графическое изображение ряда распределения называется многоугольником распределении.
Наиболее общей формой закона распределения является функция распределения, представляющая собой вероятность того, что случайная величина примет значение меньше, чем заданное :
Свойства функции распределения:
1.
2. если
3. ,
Для дискретной случайной величины функция распределения - разрывная ступенчатая функция, непрерывная слева (рис.2).
Вероятность того, что случайной величины примет значение, заключенное в интервале определяется по формуле:
Числовые характеристики дискретной случайной величины :
- Математическое ожидание: .
- Дисперсия: .
- Среднее квадратическое отклонение:
асто встречающиеся распределения дискретных случайных величин.
1. Закон распределения Бернулли.
Случайная величина ,распределена по закону Бернулли (индикаторная случайная величина) принимает значения -неудача и - успех, с вероятностями и соответственно ( .
,
2. Биноминальный закон распределения.
Случайная величина принимает значения: 0,1,2,3,…, с вероятностью, определяемой по формуле Бернулли:
.