Истолкование (интерпретация) результата Решение математической задачи
Математическое моделирование и принятие решений
Хотя аналогия часто вводит в заблуждение, это
Наименьшее из того, что вводит нас в заблуждение.
С. Батлер
Если проблему удастся перенести на язык формул, то она сильно упрощается. Математический подход прост еще и потому, что он подчиняется вполне определенным жестким правилам, которые нельзя отменить указом или иным способом.
Сложность нашей жизни как раз и состоит в том, что все, что в ней случается, свободно от пут условностей.
Математика имеет дело с упрощенными моделями явлений. Природные корни некоторых математических наук скрыты от нас паутиной времени, в других, более молодых, они видны явно. По существу, формула (или совокупность формул) представляет собой определенный этап в построении математической модели.
Математические методы и моделирование в целенаправленной деятельности
Математической моделью, с формальной точки зрения, можно назвать любую совокупность элементов и связывающих их операций. С содержательной точки зрения интересны модели, являющиеся изоморфным отображением реальных или реализуемых объектов, процессов и явлений. С математическими моделями непосредственно связан математический метод познания отображаемых моделью объектов.
Соотношение между элементами а, Ь и с, выражаемое формулой а + Ь = с, это математическая модель. Она изоморфно отображает операцию объединения двух куч камней с их числами а и b в общую кучу камней, которых окажется с = а + Ь. В этом смысле операция сложения отвечает объединению двух куч в одну, а модель а + Ъ = с изоморфнаэтому слиянию. При этом, не объединяя кучи и не считая в ней камней, можно предсказать, что их будет с.
Этот элементарный пример поясняет общий математический метод познания. Он состоит в построении для изучаемого объекта, процесса или явления изоморфной математической модели (на основе элементов и операций операционной системы), в изучении этой математической модели (для чего требуется выполнимость используемых в ней операций) и переносе в силу изоморфизма результатов, полученных для модели, на исходный изучаемый объект.
В этом направлении математика не только создала свои разнообразные внутренние модели алгебры, геометрии, функции комплексного переменного, дифференциальных уравнений и т. д., но и помогла естествознанию в построении великих математических моделей механики, электродинамики, термодинамики, химической кинетики, микромира, пространства-времени и тяготения, вероятностей, передачи сообщений, управления, логического вывода и др. В создании своих моделей математика часто опережала потребности естествознания и техники.
Построение модели
Реальный объект Содержательная модель Математическая модель
Истолкование (интерпретация) результата Решение математической задачи
Реализация универсального математического метода познания и есть, по-видимому, основная цель и задача современной математики. Она включает, в первую очередь, построение новых неведомых математических моделей, в частности в биологии, для познания жизни и деятельности мозга, мироздания и микромира,новых фантастических техно-логий и техники, а также познание экономических и социальных явлений опять же с помощью математических моделей.
Не следует забывать и о дальнейшем расширении и обогащении операционной системы и ее реальных возможностей, гигантски усиливаемых вычислительными методами, вычислительными машинами и средствами программирования.
Одним из мощных программных средств обеспечения математического моделирования систем любого назначения является интегрированный пакет MathCad;есть и другие автоматизированные системы численных и аналитических расчетов, обладающие дружественным к пользователю интерфейсом и большими вычислительными возможностями.
Примерами таких математических пакетов являются Derive, MATLAB, Maple, Mathematica, SPSS, Statistica.
Кроме них имеется много узко специализированных или менее известных пакетов.
Математические методы: аналитические, численные, графические, прямые, итерационные.
В современном мире управление — дело отнюдь нелегкое, поскольку политическая, экономическая и социальная структура общества является сложной и постоянно усложняется еще больше. И то же время для эффективного управления необходимо учитывать характер взаимоотношений между различными элементами организации, а также все ее взаимодействия с окружающей ее средой.
Один из мощных инструментов анализа, которым располагают люди, ответственные за управление сложными системами, — моделирование.
Модель является представлением реального объекта, системы или понятия (идеи) в некоторой форме, отличной от формы их фактического реального существования. Обычно модель служит средством, помогающим в объяснении, понимании или совершенствовании системы. Модель какого-либо объекта может быть или точной копией этого объекта (хотя, возможно, и выполненной в другом масштабе или из другого материала),или отображать некоторые характерные свойства объекта в абстрактной форме, в частности в виде математической модели.
Анализ математических моделей дает в руки менеджеров, управляющих и других руководителей эффективный инструмент, который может использоваться для предсказания поведения систем и сравнения получаемых результатов. Таким образом, моделирование позволяет логическим путем прогнозировать последствия альтернативных действий и дос
таточно уверенно показывает, какому из них следует отдать предпочтение. Применение моделей дает руководителям и менеджерам метод, повышающий эффективность их суждений и интуиции.
Математическая модель может использоваться традиционным способом, т.е. для получения какого-то частного решения, но в сфере управления она наиболее успешно применяется для имитационного моделирования.
Имитация (от лат. lmitatio — подражание) — это воспроизведение на модели той или иной реальной ситуации, ее исследование и в конечном счете нахождение наиболее удачного решения. Имитационное моделирование основывается, главным образом, на теории сложных систем, теории вероятностей и математической статистике. Но в то же время имитационное моделирование и экспериментирование, как и само управление, во многом остаются творческими процессами.Собственно имитационное моделирование состоит из конструирования математической модели реальной системы и постановки на ней экспериментов, чтобы оценить (с точки зрения потребности в ресурсах, например) различные стратегии, обеспечивающие достижение цели данной системы.
Когда нужно принимать ответственное решение, т. е. при проектировании сложных технических систем, при управлении промышленным или сельскохозяйственным производством, руководстве военными действиями, большое значение имеет практический опыт, дающий возможность выделить наиболее существенные факторы, охватить ситуацию в целом и выбрать оптимальный путь для достижения поставленной цели.