Классификационные параметры. По уровню применения: общепедагогическая

По уровню применения: общепедагогическая.

По основному фактору развития: социогенная.

По концепции усвоения: ассоциативно-рефлекторная с элементами поэтапной интериоризации.

По ориентации на личностные структуры: информационная с элементами опе­рационной.

По характеру содержания: обучающая, светская, технократическая, общеобразовательная.

По типу управления: система малых групп.

По организационным формам: классно-урочная, академическая, групповая + индивидуальная.

По подходу к ребенку: дидактоцентрическая.

По преобладающему методу: объяснительно-иллюстративная.

По направлению модернизации: дидактическое реконструирование.

По категории обучаемых: массовая + продвинутая.

Целевые ориентации

• Достижение целостности математических знаний как главное условие разви­тия и саморазвития интеллекта учащихся.

" Создание информационно более совершенной последовательности разделов и тем школьных предметов, обеспечивающее их единство и целостность.

• Сверхзадача: вооружить девятилетнюю школу страны едиными учебниками математики (на базе рационального синтеза учебников алгебры, геометрии и чер­чения).

Концептуальные положения

Понятие «укрупнение единицы усвоения» достаточно общее, его можно пред­ставить как интеграцию конкретных подходов к обучению:

1) совместно и одновременно изучать взаимосвязанные действия, операции, функции, теоремы и т. п. (в частности, взаимно обратные);

2) обеспечение единства процессов составления и решения задач (уравнений, неравенств и т. п. );

3) рассматривать во взаимопереходах определенные и неопределенные задания (в частности, деформированные упражнения);

4) обращать структуру упражнения, что создает условия для противопоставле­ния исходного и преобразованного заданий;

5) выявлять сложную природу математического знания, достигать системности знаний;

6) принцип дополнительности в системе упражнений (понимание достигается в результате межкодовых переходов образного и логического в мышлении, созна­тельного и подсознательного компонентов).

При этом используются фундаментальные закономерности мышления (вкупе оптимизирующие познавательный процесс):

• законединства и борьбы противоположностей;

• перемежающеесяпротивопоставление контрастных раздражителей (И. П. Павлов);

• принципобратных связей, системности и цикличности процессов (П. К. Ано­хин), обратимости операций (Ж. Пиаже);

• переход к сверхсимволам, т. е. оперирование более длинными последователь­ностями символов (кибернетический аспект).

Укрупненная дидактическая единица - УДЕ - это локальная система понятий, объединенных на основе их смысловых логических связей и образующих целостно усваиваемую единицу информации.

В отличие от гештальтистов П. М. Эрдниев рассматривает целостные образы, формирующиеся в результате обучения, какпостаналитические. Им предше­ствует стадия анализа, разложения первоначально целостных образов, выделения в воспринимаемом объекте его элементов и их взаимоотношений.

Обучение строится по следующей схеме:

1) Стадия усвоения недифференцированного целого в его первом приближении.

2) Выделение в целом элементов и их взаимоотношений.

3) Формирование на базе усвоенных элементов и их взаимоотношений более совершенного и точного целостного образа.

Особенности содержания

В XX в. в школьном расписании встречались пять составляющих (предметов) единой науки математики: арифметика, геометрия, алгебра, тригонометрия, чер­чение, причем по некоторым предметам печаталось две книги (учебник и задач­ник). П. М. Эрдниев объединил в одном учебнике «Математика» все эти предметы, а также теорию и упражнения.

В едином учебнике осуществляется синтез планиметрии и стереометрии, при этом классические разделы геометрии получают новую, координатную характери­стику.

В едином учебнике широко используются умозаключения по аналогии - важ­нейшему элементу творческого мышления. Упражнения приводятся по каждому логически завершенному параграфу (уроку, занятию).

Учащимся предлагается:

а)изучать одновременновзаимно обратные действия и операции: сло­жение и вычитание, умножение и деление, возведение в степень и извлечение корня, заключение в скобки и раскрытие скобок, логарифмирование и потенциро­вание и т. п. ;

6)сравнивать противоположные понятия, рассматривая их одновре­менно: прямая и обратная теоремы; прямая и противоположная теоремы; прямая и обратная функции; периодические и непериодические функции; возрастающие и убывающие функции; неопределенные и «определенные» уравнения; непротиво­речивые и противоречивые уравнения, неравенства; прямые и обратные задачи вообще;

в)сопоставлять родственные и аналогичные понятия: уравнения и неравенства, арифметические и геометрические прогрессии, одноименные законы и свойства действий первой и второй ступени; определения и свойства синуса и косинуса, свойства прямой и обратной пропорциональности и т. д. ;

г)сопоставлять этапы работы над упражнением, способы решения, на­пример: графическое и аналитическое решение системы уравнений; аналитичес­кий и синтетический способы доказательства теорем (решения задач); геометри­ческое и аналитическое (через координаты) определение вектора; доказательство «рассуждением» и с помощью граф-схемы и т. п.

Таким образом, главной особенностью содержания технологии П. М. Эрдниева является перестройка традиционной дидактической структуры материала внутри учебных предметов, а в ряде случаев и внутри блока родственных учебных пред­метов.

Особенности методики

В качестве основного элемента методической структуры взято понятие «матема­тическое упражнение» в самом широком значении этого слова, как соединяющее деятельность ученика и учителя, как элементарную целостность двуединого про­цесса «учения — обучения».

Ключевой элемент технологии УДЕ - это упражнение-триада, элементы кото­рой рассматриваются на одном занятии:

а) исходная задача;

б) ее обращение;

в) обобщение.

В работе над математическим упражнением (задачей) отчетливо выделяются четыре последовательных и взаимосвязанных этапа:

а) составление математического упражнения;

б) выполнение упражнения;

в) проверка ответа (контроль);

г) переход к родственному, но более сложному упражнению. Традиционное же обучение ограничивается большей частью вторым из указан­ных этапов.

Опыт обучения на основе укрупнения единиц усвоения показал, что основной формой упражнения должно статьмногокомпонентное задание, образующе­еся из нескольких логически разнородных, но психологически объединенных в некоторую целостность частей, например:

а) решение обычной «готовой» задачи;

б) составление обратной задачи и ее решение;

в) составление аналогичной задачи по данной формуле (тождеству) или урав­нению и решение ее;

г) составление задачи по некоторым элементам, общим с исходной задачей;

д) решение или составление задачи, обобщенной по тем или иным параметрам по отношению к исходной задаче.

Разумеется, вначале в укрупненное упражнение могут войти лишь некоторые из указанных вариаций.

Лейтмотивом урока, построенного по системе УДЕ, служит правило: не повто­рение, отложенное на следующие уроки, а преобразование выполненного задания, осуществляемое немедленно на этом уроке, через несколько секунд или минут после исходного, чтобы познавать объект в его развитии, противопоставить исход­ную форму знания видоизмененной.

Методы обучения реализуются путем выполнения упражнений и объективиру­ются в знаниях. При этом не одно только количественное разнообразие методов и упражнений важно само по себе. Лишь набор определенных упражнений, сконст­руированных на основе принципа укрупнения, в четкойих последовательности обеспечивает прочность и сознательность усвоения знаний,

В технологии УДЕ используются одновременно все коды, несущие математи­ческую информацию: слово, рисунок (чертеж), символ, число, модель, предмет, физический опыт.

Литература

1. Селевко Г. К. Дидактические структуры учебного курса // Вопросы дидактики в техничес­ком вузе. - Омск, 1985.

2. Эрдниев П. М. Обучение математике в начальных классах (из опыта работы). ~ М. : Просве­щение, 1977.

3. Эрдниев П. М. Обучение математике в начальных классах (опыт обучения методом укрупне­ния дидактических единиц). - М. : Педагогика, 1979.

4. Эрдниев П. М. Обучение математике по УДЕ. Серия статей // Начальная школа. - 1993. -1996.

5. Эрдниев П. М. Укрупнение дидактических единиц как технология обучения. - М. , 1992.

6. Эрдниев П. М. Укрупненные дидактические единицы на уроках математики в 1-2 классах. -М. : Просвещение, 1992.

7. Эрдниев П. М. Экспериментальное учебное пособие для 1, 2 класса. - М. : Педагогика, 1977.

8. Эрдниев П. М. , Эрдниев Б. П. Теория и методика обучения математике в начальной школе. -М. : Педагогика, 1988.

9. Эрдниев П. М. , Эрдниев Б. Л. Укрупнение дидактических единиц в обучении математике. -М. , 1986.

Наши рекомендации