Условия и приемы осуществления проблемного обучения
Осуществление проблемного обучения возможно при следующих условиях:
– наличие проблемной ситуации;
– готовность ученика к поиску решения;
– возможность неоднозначного пути решения.
При этом выделяют следующие приемы осуществления проблемного обучения:
- приёмы создания проблемных ситуаций – постановка проблемных вопросов, задач, опытов;
- приёмы формирования учебных гипотез по разрешению проблемных ситуаций – высказывание предположений о причинах явлений, о связях между понятиями, величинами;
- приёмы доказательства учебных гипотез – доказательства на основе сравнений, логических рассуждений, результатов учебно-исследовательских опытов;
- приёмы формирования новых учебных выводов и обобщений.
Проблемное обучение рассчитано на всех, а не только на хорошо успевающих учащихся. Проблемный подход призван заинтересовать всех школьников предстоящей проблемой, позволяет управлять размышлениями учащихся, быстро получать информацию от учащихся и оперативно реагировать на неё. К слабоуспевающим учащимся нужен особы подход. При постановке проблемных задач необходимо привлекать их к ответам на более лёгкие вопросы, поощряя их ответы и создавая тем самым стимулы для дальнейшего участия в размышлениях над более сложными проблемами.
Наиболее эффективное применение методов проблемного обучения возможно в тех случаях, когда содержание учебного материала направлено на формирование понятий, законов и теорий в соответствующей области науки; когда содержание учебного материала не является принципиально новым, а логически продолжает ранее изученное на базе которого, ученики могут сделать самостоятельные шаги в поиске знаний; когда содержание доступно для самостоятельных поисков учащихся.
3. Использование методов проблемного обучения на уроках химии
(из опыта работы)
Курсы неорганической и органической химии, построенные на идеях зависимости свойств веществ от их строения, представляют особенно широкие возможности для использования методов проблемного обучения. Поэтому изучение всего основного содержания предмета можно построить как систему познавательных проблем и способов их решения, но масштабы проблем будут различны. Одни из них широкого плана, и решению их подчиняется изучение отдельных тем или целых разделов химии, другие более узкие, охватывающие содержание нескольких уроков или одного, являющиеся ступенями к решению более общих проблем.
Использование методов проблемного обучения, по моему мнению, следует начинать уже на первом году обучения химии, то есть с восьмого класса. С первых уроков учащиеся знакомятся с основными химическими понятиями и законами, расширяют знания о строении веществ и их свойствах. Таким образом, оперируя основными положениями «Атомно-молекулярного учения», учащиеся достаточно активно участвуют в решении проблемных вопросов и задач при изучении основных законов химии: сохранения массы веществ, постоянства состава вещества и других.
Например, урок в 8 классе «Закон сохранения массы веществ». Проблемная задача мною ставится в форме демонстрационного опыта: в замкнутой системе взвешиваются вещества, вступающие в реакцию, растворы сульфата меди (II) (CuSO4) и гидроксида калия (m1) (KOH) и образующиеся в результате реакции вещества, гидроксид меди (II) (Cu(OH)2) и раствор сульфата калия (m2) (K2SO4); по одному из признаков протекания реакций учащиеся убеждаются в том, что химическая реакция прошла - выпал осадок голубого цвета. Результаты взвешивания веществ до и после реакции подтверждают закон сохранения массы веществ. Учащиеся стоят перед решением проблемной задачи: почему m1=m2? Благодаря актуализации ранее полученных знаний о строении веществ, учащиеся сравнительно легко приходят к следующему выводу: m1=m2, так как атомы и их количество в результате химических превращений не изменяются, а только соединяются по-другому с образованием новых веществ.
Очень часто для решения проблемных ситуаций на уроке требуется от учащихся привлечения не только ранее изученных внутрипредметных связей, но и межпредметных связей (природоведение, биология, физика и др.). Например, уроки по круговороту веществ в природе в 8 и 9 классах. При изучении вопроса о круговороте кислорода в природе (8 класс) я ставлю проблемный вопрос: «Почему запасы атмосферного кислорода остаются на постоянном уровне (21% по объёму), не смотря на огромный расход этого вещества в различных процессах (дыхание, горение)? Используя сведения о кислороде, полученные на уроках биологии и химии, учащиеся приходят к выводу о том, что постоянное содержание кислорода в атмосфере является следствием равновесия двух процессов противоположных по действию, так как продукты одного процесса служат исходными веществами для другого, это окисление (дыхание, горение) и фотосинтез.
Для более успешного подхода при изучении веществ как неорганических, так и органических, очень важно с первых шагов изучения химии показать на примере водорода наличие причинно-следственных связей различных сторон окружающего мира:
строение способы
получения
нахождение
состав в природе
свойства применение
Поэтому уже при изучении следующего вещества водорода, можно ставить перед учащимися вопросы проблемного характера. Например, урок «Применение водорода», решая ряд проблемных вопросов на зависимость свойств водорода и возможным его применением, ученики заполняют таблицу:
Свойства водорода | Области применения водорода |
1. горит 2Н2 + О2 = 2Н2О + 572 кДж | использование как топливо, для сварки и резки металлов, так как реакция экзотермическая |
2. восстанавливает металлы из оксидов СuО + Н2 = Сu + Н2О | для промышленного получения металлов из природного сырья |
3. соединяется с неметаллами, образуя различные бинарные соединения – хлороводород, аммиак, сероводород и другие | получение кислот, солей – веществ важных для промышленности и сельского хозяйства |
На уроках по изучению свойств оксидов, оснований, кислот и солей целесообразней ставить проблему перед учащимися в ходе выполнения исследовательских, лабораторных задач с последующим обобщением знаний по этим темам. Так, например, на уроке «Соли аммония» (9 класс) мною предлагается задания по ознакомлению со свойствами солей аммония:
1. Изучите внешний вид и растворимость солей аммония в воде - NH4Cl
(1 вариант), (NH4)2SO4 (2 вариант).
При обсуждении результатов опытов делается вывод об общих физических свойствах солей аммония.
2. Составьте уравнения диссоциации этих солей.
Следует вывод, на основании анализа уравнений диссоциации, о схожем механизме с другими солями и возможности проявления общих с ними свойств.
3. Исследуйте, как эти соли относятся к действию щелочей. К растворам солей добавьте 3 - 4 капли раствора гидроксида натрия, встряхните и определите запах.
Обсуждение результатов опытов позволяет сделать выводы: об общем признаке протекания реакций между солями аммония и щелочами (появление запаха аммиака); о возможном использовании данной реакции для качественного определения катионов аммония.
4. Составьте молекулярное и ионные уравнения данной реакции.
Большое значение в химии имеет понимание генетической связи между неорганическими и органическими веществами. Добиться положительных результатов можно быстрее, если вначале выяснить характерное строение веществ данного класса и их химические свойства, а потом на этой основе выявить генетические связи с другими классами соединений. Если в основу урока (8 класс) по теме «Генетическая связь между различными классами неорганических соединений» заложить проблемную задачу в форме демонстрационного опыта, то ученики сами придут к выводу о существовании взаимосвязи между веществами разных классов в их строении и свойствах.
Задача.
Экспериментально докажите принадлежность оксида фосфора (V) и оксида кальция к определённым группам оксидов. Установите взаимосвязь их состава и свойств с представителями других классов.
Решение:
Опытным путём учащимися осуществляются реакции:
1. СаО + Н2О = Са(ОН)2 – лакмус меняет цвет на синий, значит, образовалось растворимое основание, следовательно, оксид кальция – основный оксид;
2. Р2О5 + 3Н2О = 2Н3РО4 - лакмус меняет цвет на красный, значит, образовалась кислота, следовательно, оксид фосфора(V) – кислотный оксид;
3. при сливании полученных растворов, лакмус принял первоначальный цвет – фиолетовый, значит, при взаимодействии основания и кислоты образуется соль
3Са(ОН)2 + 2Н3РО4 = Са3(РО4)2 + 6Н2О.
Анализируя результаты опытов, учащиеся, под моим руководством, составляют схему, отражающую генетическую связь между различными классами неорганических соединений:
Са → СаО → Са(ОН)2
металл основный основание
Оксид
Са3(РО4)2
Соль
Р → Р2О5 → Н3РО4