Глава 8. основные проблемы измерения
Измерение в науке
Измерение в науке означает выявление количественных характеристик изучаемых явлений. Цель измерения всегда заключается в получении информации о количественных признаках объектов, организмов или событий. Измеряется не сам объект, а только свойства или отличительные признаки объекта. В широком смысле измерение – это особая процедура, посредством которой числа (или порядковые величины) приписываются вещам по определенным правилам. Сами правила состоят в установлении соответствия между некоторыми свойствами чисел и некоторыми свойствами вещей. Возможность данного соответствия и обосновывает важность измерения в педагогике.
В процессе измерения исходят из предположения, что все существующее каким-то образом проявляется или на что-то действует. Общая задача измерения состоит в том, чтобы определить так называемую модальность одного показателя по сравнению с другим, измеряя его «вес».
Многообразие психических, физиологических и социальных явлений принято называть переменными, поскольку они отличаются индивидуальными величинами у отдельных индивидов или в разное время у одного и того же индивида. С позиции теории измерения следует различать два аспекта: а) количественная сторона частота некоторого проявления, (чем оно чаще проявляется, тем выше значение свойства); б) интенсивность (величина или сила проявления).
Измерения можно проводить на четырех уровнях. Четырем уровням будут соответствовать четыре шкалы.
Шкала [< лат. scala – лестница] – инструмент для измерения непрерывных свойств объекта; представляет собой числовую систему, в которой отношения между различными свойствами объектов выражены свойствами числового ряда. Шкала есть способ упорядочивания объектов произвольной природы. В педагогике, психологии, социологии и других социальных науках различные шкалы используются для изучения различных характеристик педагогических и социально-психологических явлений.
Первоначально были выделены четыре типа числовых систем, которые определяют соответственно четыре уровня (или шкалы) измерения. Точнее три уровня, но третий уровень подразделяется еще на два подуровня. Их разделение осуществимо на основе тех математических преобразований, которые допускаются каждой шкалой.
1) Шкала наименований (номинальная).
2) Шкала порядка (ранговая, ординальная).
3) Метрические шкалы: а) шкала интервалов, б) шкала пропорций (пропорциональная, отношений).
Метрическая шкала бывает относительная (шкала интервалов) и абсолютная (шкала пропорций). В метрических шкалах носитель шкалы образует отношения строгого порядка, как, например, в шкалах времени, весов, температуры и др.
При абсолютном типе метрической шкалы за точку отсчета выбирается некоторая абсолютная отметка, например, измерение длины и расстояния в сравнении с эталоном (рост Пети 92 см, расстояние от одного города до другого 100 км).
В относительных шкалах точка отсчета привязана к чему-то другому. Например, Петя ростом с третьеклассника, длина удава равняется тридцати двум попугаям, летоисчисление на Западе привязывается к рождеству Христову, нулевая точка Московского времени служит ориентиром для всей территории Российской Федерации и Гринвичское нулевое время для Москвы.
Порядковая шкала не дает возможности изменить расстояние между объектами, проецируемыми на нее. С порядковыми шкалами связаны нечеткие шкалы, например, Петя выше Саши. Сначала было то-то, а потом то-то; также далеко, как …; давно, как … . Список учащихся в классном журнале также есть вид порядковой шкалы. Такие шкалы широко используются в моделировании рассуждений: если А больше, чем В, а С выше А, следовательно, С выше, чем В.
Различие уровней измерения какого-либо качества можно проиллюстрировать следующим примером. Если подразделить учащихся на справившихся и не справившихся с контрольной работой, то тем самым получим номинальную шкалу выполнивших задание. Если можно установить степень правильности выполнения контрольной работы, то строится шкала порядка (ординальная шкала). Если можно измерить насколько и во сколько раз грамотность одних больше грамотности других, то можно получить интервальную и пропорциональную шкалу грамотности выполнения контрольной работы.
Шкалы различаются не только своими математическими свойствами, но и разными способами сбора информации. В каждой шкале применяются строго определенные методы анализа данных.
В зависимости от типа задач, решаемых с помощью шкалирования, строят либо а) шкалы оценок, либо б) шкалы для измерения социальных установок.
Шкала оценок – методический прием, позволяющий распределять совокупность изучаемых объектов по степени выраженности общего для них свойства. Возможность построения шкалы оценок основывается на предположении, что каждый эксперт способен непосредственно давать количественные оценки изучаемым объектам. Простейшим примером такой шкалы является обычная школьная система баллов. Шкала оценок имеет от пяти до одиннадцати интервалов, которые могут быть обозначены цифрами, либо сформулированы вербально (словесно). Считается, что психологические возможности человека не позволяют ему производить классификацию объектов более чем по 11-13 позициям. К основным процедурам шкалирования с помощью шкалы оценок относятся парное сравнение объектов, отнесение их к категориям и др.
Шкалы для измерения социальных установок. Например, отношение учащихся к выполнению проблемного задания может варьироваться от отрицательного до творчески активного (рис.1). Расположив все промежуточные значения на шкале, мы получаем:
отрица- равнодушное заинтересо- активное очень творчески
тельное ванное активное активное
1 2 3 4 5 6
Рис. 1. Пример односторонней шкалы
Используя принцип шкал, можно строить шкалы полярных профилей, измеряющие сразу несколько показателей.
Сама шкала точно определяет промежуточные значения измеряемой переменной:
+7 – признак проявляется всегда,
+6 – очень часто, почти всегда,
+5 – часто,
+4 – иногда, ни часто, ни редко,
+3 – редко,
+2 – очень редко, почти никогда,
+1 – никогда.
Инвариант этой шкалы с заменой односторонней шкалы на двустороннюю может выглядеть следующим образом (см. рис. 2):
1 2 3 4 5 6 7
–3 –2 –1 0 +1 +2 +3
Рис. 2. Пример двусторонней шкалы
Шкалирование [< англ. scaling – определение масштаба, единицы измерения] – метод моделирования реальных процессов с помощью числовых систем. В социальных науках (педагогике, психологии, социологии и др.) шкалирование является одним из важнейших средств математического анализа изучаемого явления, а также способом организации эмпирических данных, получаемых с помощью наблюдения, изучения документов, анкетного опроса, экспериментов, тестирования. Большинство социальных объектов не могут быть строго фиксированы и не поддаются прямому измерению.
Общий процесс шкалирования состоит в конструировании по определенным правилам самой шкалы и включает в себя два этапа: а) на этапе сбора информации осуществляется изучение эмпирической системы исследуемых объектов и фиксирование типа отношений между ними; б) на этапе анализа данных строится числовая система, моделирующая отношения эмпирической системы объектов.
Существует два типа задач, решаемых с помощью метода шкалирования: а) числовое отображение совокупности объектов с помощью их усредненной групповой оценки; б) числовое отображение внутренних характеристик индивидов посредством фиксации их отношения к какому-либо социально-педагогическому явлению. В первом случае отображение осуществляется с помощью шкалы оценок, во втором – шкалы установок.
Разработка шкалы для измерения требует учета ряда условий: соответствие измеряемых объектов, явлений измерительному эталону; выявление возможности измерения интервала между различными проявлениями измеряемого качества или свойства личности; определение конкретных показателей различных проявлений измеряемых явлений.
В зависимости от уровня шкалы необходимо вычислять величину для обозначения главной тенденции. На номинальной шкале можно указать только модальную величину, т.е. наиболее часто встречающуюся величину. Порядковая шкала позволяет вычислить медиану, ту величину, по обе стороны от которой располагается равное количество величин. Шкала интервалов и шкала отношений делают возможным вычисление средней арифметической величины. От уровня шкалы зависят также величины корреляции.
Номинальная шкала
Номинальная шкала (шкала наименований) – это самый «низший» уровень измерения, предполагающий лишь констатацию подобия или различия объектов относительно какого-либо признака, то есть качественную однородность признака. Шкалу наименований представляет приписывание числовых индексов объектам. В них объекты помещаются в отдельные категории. При этом числовые индексы используются в качестве отличительных ярлыков (0–1), не имеющих количественного значения. Измерение в шкале наименований обеспечивает лишь группировку предметов в классы, идентичные в отношении определенного признака или свойства предмета. Измерить в шкале наименований – значит приписать число определенному признаку. Например, группировка учащихся по полу, социальному положению, месту жительства. К номинальному измерению относится и измерение типа «знает – не знает».
При использовании номинальных шкал можно определить, какой номинальный класс имеет самый большой состав, и назвать этот класс модой распределения. В данном случае мода является статистической мерой «центральной тенденции», т.е. если продолжить наблюдения, изменяя условия, в которых они проводились ранее, то мода будет представлять наблюдения, которые можно ожидать с максимальной вероятностью.
Если в каком-то классе 14 детей являются единственным ребенком в семье (эта категория условно будет поименована нулем «0»), 11 детей имеют брата или сестру (обозначим единицей «1»), 5 детей – двух (присвоим данной категории детей цифру «2»),
3 ребенка – трех (обозначим тройкой «3») и 1 ребенок – четырех братьев и сестер (обозначим «4»), то «0» («единственный ребенок в семье») является здесь модальной величиной. В данном примере упорядочить по возрастающей номинальные величины условно можно следующим образом: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4.
В шкале наименований объекты классифицированы, классы обозначены номерами. То, что номер одного класса больше или меньше другого, еще ничего не говорит о свойствах объектов за исключением того, что они различаются. Цифры 0, 1, 2, 3, 4 взяты нами произвольно, вместо них вполне возможно присвоить совсем другие цифры в любом порядке: 187, 59, 1001, 003 и т.п. За всеми цифрами нет никакого арифметического содержания, что еще более контрастно подчеркивается при вербальном обозначении, присвоив им имена [< лат. nomen] и обозначив терминами желтизна, синева, чернота и др. Невозможность применения арифметических операций в отношении к данной шкале является характерным признаком номинальных величин (см. таблицу 9).
Таблица 9