Лекция 2. Цели и задачи школьного курса информатики
Содержание лекционного занятия.
В образовательном стандарте по «Информатике и ИКТ» сформулированы цели изучения предмета, которые разнесены для начальной, основной и для старшей школы. В основной школе изучение информатики и ИКТ направлено на достижение следующих целей:
• освоение знаний, составляющих основу научных представлений об информации, информационных процессах, системах, технологиях и моделях;
• овладение умениями работать с различными видами информации с помощью компьютера и других средств информационных и коммуникационных технологий (ИКТ);
• развитие познавательных интересов, интеллектуальных и творческих способностей средствами ИКТ;
• воспитание ответственного отношения к информации с учетом правовых и этических аспектов её распространения; избирательного отношения к полученной информации;
• выработка навыков применения средств ИКТ в повседневной жизни, при выполнении индивидуальных и коллективных проектов, в учебной деятельности, дальнейшем освоении профессий, востребованных на рынке труда.
В старшей школе на базовом уровне ставятся такие
цели:
• освоение системы базовых знаний, отражающих вклад информатики в формирование современной научной картины мира, роль информационных процессов в обществе, биологических и технических системах;
• овладение умениями применять, анализировать, преобразовывать информационные модели реальных объектов и процессов, используя при этом информационные и коммуникационные технологии, в том числе при изучении других школьных дисциплин;
• развитие познавательных интересов, интеллектуальных и творческих способностей путем освоения и использования методов информатики и средств ИКТ при изучении различных учебных предметов;
• воспитание ответственного отношения к соблюдению этических и правовых норм информационной деятельности;
• приобретение опыта использования информационных технологий в индивидуальной и коллективной учебной и познавательной, в том числе проектной деятельности.
В старшей школе на профильном уровне ставятся такие цели:
• освоение и систематизация знаний, относящихся: к математическим объектам информатики; к построению описаний объектов и процессов, позволяющих осуществлять их компьютерное моделирование; к средствам моделирования; к информационным процессам в биологических, технологических и социальных системах;
• овладение умениями строить математические объекты информатики, в том числе логические формулы и программы на формальном языке, удовлетворяющие заданному описанию; создавать программы на языке программирования по их описанию; использовать общепользовательские инструменты и настраивать их для нужд пользователя;
• развитие алгоритмического мышления, способностей к формализации, элементов системного мышления;
• воспитание чувства ответственности за результаты своего труда; формирование установки на позитивную социальную деятельность в информационном обществе, на недопустимость действий, нарушающих правовые, этические нормы работы с информацией;
• приобретение опыта проектной деятельности, создания, редактирования, оформления, сохранения, передачи информационных объектов различного типа с помощью современных программных средств; построения компьютерных моделей, коллективной реализации информационных проектов, информационной деятельности в различных сферах, востребованных на рынке труда.
Перечисленные цели школьного курса информатики и ИКТ можно сгруппировать в три основные общие цели: образовательная, практическая и воспитательная. Эти общие цели обучения определяются с учетом места информатики в системе наук и жизни современного общества [1].
Образовательная цель обучения информатике -дать каждому школьнику начальные фундаментальные знания основ науки информатики, включая представления о процессах преобразования, передачи и использования информации, и на этой основе раскрыть значение информационных процессов в формировании научной картины мира, роль информационных технологий и компьютеров в развитии современного общества. Необходимо вооружить учащихся базовыми умениями и навыками для прочного усвоения этих знаний и основ других наук. Реализация образовательной цели в соответствии с законами дидактики способствует общему умственному развитию учащихся, развитию их мышления и творческих способностей.
Практическая цель - предполагает вклад в трудовую и технологическую подготовку учащихся, вооружение их знаниями, умениями и навыками, необходимыми для последующей трудовой деятельности. Учащихся следует не только знакомить с теоретическими основами информатики, но и обучать работе на компьютере и использованию средств современных информационных технологий; знакомить с профессиями, непосредственно связанными с ЭВМ.
Воспитательная цель реализуется мировоззренческим воздействием на ученика путем осознания им значения вычислительной техники и информационных технологий для развития цивилизации и общества. Важным является формирование представления об информации как одного из трех фундаментальных понятий науки: материи, энергии и информации. Использование в обучении современных информационных технологий формирует культуру умственного труда. Изучение информатики требует от учащихся определенных умственных и волевых усилий, концентрации внимания, логики и воображения. В курсе информатики ученику следует учиться четко и педантично реализовывать алгоритм своих действий, уметь абсолютно точно записывать его на бумаге и безошибочно вводить в компьютер. Это постепенно отучает учеников от неточности, нечеткости, неконкретности, расплывчатости, небрежности и т. п .
Разумеется, все эти три цели взаимосвязаны и не могут реализовываться в отрыве друг от друга. Нельзя получить воспитательный эффект, игнорируя практическую сторону содержания обучения.
Общие цели в реальном учебном процессе трансформируются в конкретные цели обучения. Однако это оказывается непростой задачей, что подтверждается многолетним опытом преподавания информатики в школе. На формулировку конкретных целей влияет то обстоятельство, что наука информатика сама находится в стадии интенсивного развития. Кроме того, изменение парадигмы образования, в частности его стандартов, порождает изменение содержания этих целей, увеличивает долю субъективизма в их определении.
Когда впервые вводился курс ОИВТ в 1985 году, то выдвигалась стратегическая цель «...всестороннее и глубокое овладение молодежью вычислительной техникой», что в то время рассматривалось как важный фактор ускорения научно-технического прогресса в нашей стране и ликвидации намечавшегося отставания от передовых индустриальных стран Запада. Основными целями курса тогда были:
• формирование представлений учащихся об основных правилах и методах реализации решения задач на ЭВМ;
• освоение элементарных умений пользоваться микрокомпьютерами для решения задач;
• ознакомление с ролью ЭВМ в современном производстве.
Ученые и методисты тогда считали, что введение курса информатики создаст возможности для изучения школьных предметов на качественно новом уровне за счет повышения наглядности, возможности моделирования на ЭВМ сложных объектов и процессов, сделает усвоение учебного материала более доступным, расширит учебные возможности школьников, активизирует их познавательную деятельность.
В качестве конкретной цели была поставлена компьютерная грамотность учащихся. Понятие компьютерной грамотности достаточно быстро стало одним из новых понятий дидактики. Постепенно выделили следующие компоненты, определяющие содержание компьютерной грамотности школьников [10]:
• понятие об алгоритме, его свойствах, средствах и методах описания, понятие о программе как форме представления алгоритма для ЭВМ;
• основы программирования на одном из языков;
• практические навыки обращения с ЭВМ;
• принцип действия и устройство ЭВМ;
• применение и роль компьютеров в производстве и других отраслях деятельности человека.
Как видно из содержания, компьютерная грамотность (КГ) является расширением понятия алгоритмической культуры учащихся (АК) путем добавления некоторых «машинных» компонентов. Эта естественная преемственность всегда подчеркивалась, и методистами даже ставилась задача «завершить формирование ведущих компонентов алгоритмической культуры школьников как основы формирования компьютерной грамотности», что можно представить схемой:
АК -> КГ
В компонентах компьютерной грамотности учащихся можно выделить следующее содержание:
1. Умение работать на компьютере. Это умение есть умение на пользовательском уровне, и включает в себя: умение включить и выключить компьютер, владение клавиатурой, умение вводить числовые и текстовые данные, корректировать их, запускать программы. Сюда относят также умения работать с прикладными программами: текстовым редактором, графическим редактором, электронной таблицей, игровыми и обучающими программами. По своему содержанию эти умения доступны младшим школьникам и даже дошкольникам.
2. Умение составлять программы для ЭВМ. Большинство методистов считает, что подготовка программистов не может быть целью общеобразовательной школы, однако, понимание принципов программирования должно входить в содержание образования по информатике. Этот процесс должен быть растянут во времени и начинаться с формирования умений составления простейших программ, включающих организацию ветвлений и циклов. Такие программы можно писать с использованием простых и наглядных «доязыковых» средств. В старших классах в условиях профильного обучения возможно изучение одного из языков программирования. При этом важно не столько изучение языка, сколько формирование прочных знаний о фундаментальных правилах составления алгоритмов и программ.
3. Представления об устройстве и принципах действия ЭВМ. В школьном курсе физики рассматриваются различные физические явления, лежащие в основе работы ЭВМ, а в курсе математики - наиболее общие положения, относящиеся к принципам организации вычислений на компьютере. В курсе информатики учащиеся должны освоить сведения, позволяющие им ориентироваться в возможностях отдельных компьютеров и их характеристиках. Этот компонент компьютерной грамотности имеет важное профориентационное и мировоззренческое значение. 4. Представление о применении и роли компьютеров на производстве и других отраслях деятельности человека, а также о социальных последствиях компьютеризации. Этот компонент должен формироваться не только на уроках информатики - необходимо, чтобы школьный компьютер использовался учениками при изучении всех учебных предметов. Выполнение школьниками проектов и решение задач на компьютере должно охватывать различные сферы применения вычислительной техники и информационных технологий.
Компоненты компьютерной грамотности можно представить четырьмя ключевыми словами: общение, программирование, устройство, применение. В обучении школьников недопустимо делать акцент на каком либо одном компоненте, ибо это приведет к существенному перекосу в достижении конечных целей преподавания информатики. Например, если доминирует компонент общение, то курс информатики становится преимущественно пользовательским и нацеленным на освоение компьютерных технологий. Если акцент делается на программировании, то цели курса сведутся к подготовке программистов.
Первая программа курса ОИВТ 1985 года достаточно быстро была дополнена второй версией, расширившей цели курса и в которой появилось новое понятие «информационная культура учащихся». Требования этой версии программы, взятые в минимальном объеме, ставили задачу достижения первого уровня компьютерной грамотности, а взятые в максимальном объеме - воспитание информационной культуры учащихся. Содержание информационной культуры (ИК) было образовано путем некоторого расширения прежних компонентов компьютерной грамотности и добавления новых. Эта эволюция целей образования школьников в области информатики представлена на схеме:
АК — КГ — ИК — ?
Как видно из схемы, в конце цепочки целей поставлен знак вопроса, что объясняется динамизмом целей образования, необходимостью соответствовать современному уровню развития науки и практики. Например, сейчас возникла потребность включения в содержание понятия ИК представлений об информационно-коммуникационных технологиях, владение которыми становится обязательным элементом общей культуры современного человека. Некоторые методисты предлагают формировать информационно-технологическую культуру школьников. В информационную культуру школьника входят следующие компоненты [1]:
1. Навыки грамотной постановки задач для решения с помощью ЭВМ.
2. Навыки формализованного описания поставленных задач, элементарные знания о методах математического моделирования и умения строить простые математические модели поставленных задач.
3. Знание основных алгоритмических структур и умение применять эти знания для построения алгоритмов решения задач по их математическим моделям.
4. Понимание устройства и функционирования ЭВМ, элементарные навыки составления программ для ЭВМ по построенному алгоритму на одном из языков программирования высокого уровня.
5. Навыки квалифицированного использования основных типов современных информационно-коммуникационных систем для решения с их помощью практических задач, понимание основных принципов, лежащих в основе функционирования этих систем.
6. Умение грамотно интерпретировать результаты решения практических задач с помощью ЭВМ и применять эти результаты в практической деятельности.
В то же время, в реальных условиях школы формирование информационной культуры во всех её аспектах представляется проблематичным. Дело здесь не только в том, что не все школы в достаточной степени обеспечены современной компьютерной техникой и подготовленными учителями. Использование многовариантных программ, в частности авторских, привело к тому, что не только содержание, но и цели образования школьников в области информатики в 1990 годы стали трактоваться по-разному. Их стали формулировать крайне нечётко, размыто и даже неопределённо, поэтому решением коллегии Минобраза России от 22.02.1995 г. было предложено использовать 3-х этапную структуру курса информатики средней школы с распределёнными целевыми установками [11]:
• Первый этап (1-6 кл.) - пропедевтический. На этом этапе происходит первоначальное знакомство с компьютером, формируются первые элементы информационной культуры в процессе использования учебных игровых программ, простейших компьютерных тренажеров на уроках математики, русского языка и других предметов.
• Второй этап (7-9 кл.) - базовый курс, обеспечивающий обязательный общеобразовательный минимум подготовки по информатике. Он направлен на овладение методами и средствами информационных технологий решения задач, формирование навыков сознательного и рационального использования компьютеров в своей учебной, а затем профессиональной деятельности.
• Третий этап (10-11 кл.) - продолжение образования в области информатики как профильного обучения, дифференцированного по объёму и содержанию в зависимости от интересов и направленности допро-фессиональной подготовки школьников.
Предложение трехэтапной структуры курса было определенным шагом вперед, способствовало преодолению разброда и шатаний в определении целей, позволило сделать изучение информатики в школе непрерывным. Новый базисный учебный план 2004 года и образовательный стандарт по информатике закрепили такую структуру курса. Более раннее изучение информатики делает реальным систематическое использование учащимися информационно-коммуникационных технологий при изучении всех школьных предметов.
Дальнейшее развитие курса информатики должно быть связано с усилением его общеобразовательной функции, с возможностями решения общих задач обучения, развития и воспитания школьников. Большинство отечественных методистов склоняются к тому, что будущее школьного предмета информатики состоит в развитии фундаментальной компоненты, а не в «погружении» в область информационных технологий. Информатика предлагает новый способ мышления и деятельности человека, позволяет формировать целостное мировоззрение и научную картину мира, и это следует использовать в обучении школьников.
В развитых странах Запада цели изучения информатики в школе носят, в основном, прикладной характер и состоят в подготовке школьников к разнообразным видам деятельности, связанным с обработкой информации, освоением средств информатизации и информационных технологий, что считается залогом успешного экономического развития общества.
Вопросы для самоконтроля
1. Приведите определение информатики. Когда она возникла и на какой основе?
2. Что общего между кибернетикой и информатикой?
3. Приведите и опишите структуру информатики как науки.
4. Что является предметом и объектом информатики?
5. Дайте определение термина «Школьная информатика».
6. Приведите структуру школьной информатики.
7. Приведите дату введения в средних школах предмета
ОИВТ.
8. Опишите этапы истории обучения информатике в отечественной школе.
9. Когда появились в учебном плане школы факультативы по информатике и как они назывались?
10. Перечислите основные компоненты алгоритмической культуры учащихся.
11. С какого года в школы стали поступать отечественные компьютерные классы?
12. Приведите компоненты, составляющие содержание компьютерной грамотности школьников.
13. Приведите компоненты информационной культуры.
14. Приведите 3-х этапную структуру курса информатики, рекомендованную Минобразом в 1995 году.
Рекомендуемая литература:
1. Бочкин А.И. Методика преподавания информатики: Учебное пособие. –М.: Высш. Шк., 1998.
2. Лапчик М.П., Семакин И., Хеннер Е.К. Методика преподавания информатики: Учебное пособие. –М.: Академия, 2001
3. Софронова Н.В. «Теория и методика обучения информатике», Москва «Высшая школа», 2004г.
Лекция 3. Содержание школьного курса информатики
Содержание лекционного занятия:
1. Современное содержание образования школьного курса информатики.
2. Общедидактические подходы к определению содержания курса информатики
3. Машинный и безмашинный варианты курса информатики
Современное содержание образования школьного курса информатики.
«Информатика – в настоящее время одна из фундаментальных областей научного знания, формирующая системно – информационный подход к анализу окружающего мира, изучающая информационные процессы, методы и средства получения, преобразования, передачи, хранения и использования информации, стремительно развивающаяся область практической деятельности человека, связанная с использованием информационных технологий».
Проблемой отбора содержания школьного курса информатики занимались многие отечественные ученые (И.Н.Антипов, Н.В.Апатова, А.Г.Гейн, А.П.Ершов, А.А.Кузнецов, А.Г.Кушниренко и др). Курс информатики (как общеобразовательный курс) рассматривается в новом стандарте в двух аспектах. Первый аспект: системно-информационная картина мира, общие информационные закономерности строения и функционирования самоуправляемых систем. Второй аспект: методы и средства получения, обработки, передачи, хранения и использования информации, решения задач с помощью компьютера и других средств новых информационных технологий.
Системно-информационный подход к анализу окружающего мира, изучение общих закономерностей строения и функционирования систем – суть школьного курса информатики на современном этапе образования.
Основные содержательные линии курса охватывают следующие группы вопросов:
- Вопросы, связанные с пониманием сущности информационных процессов, информационными основами процессов управления в системах различной природы; вопросы, охватывающие представления о передаче информации, канале передачи информации, количестве информации;
- Способы представления информации, методы и средства формализованного описания действий исполнителя; вопросы, связанные с выбором исполнителя, анализом его свойств, возможностей и эффективности его применения для решения данной задачи;
- Вопросы, связанные с методом формализации, моделирования реальных объектов и явлений для их исследования с помощью компьютера, проведения компьютерного эксперимента;
- Этапы решения задач на ЭВМ, использование программного обеспечения разного типа для решения задач, представление о современных информационных технологиях, основанных на использовании компьютера.
2. Общедидактические подходы к определению содержания курса информатики
Говоря о содержании курса информатики в школе, следует иметь в виду требования к содержанию образования, которые изложены в Законе РФ «Об образовании». В содержании образования всегда выделяют три компоненты: воспитание, обучение и развитие. Обучение занимает центральное положение. Содержание общего образования включает в себя информатику двояким образом - как отдельный учебный предмет и через информатизацию всего школьного образования. На отбор содержания курса информатики влияют две группы основных факторов [1], которые находятся между собой в диалектическом противоречии:
1. Научность и практичность. Это означает, что содержание курса должно идти от науки информатики и соответствовать современному уровню её развития. Изучение информатики должно давать такой уровень фундаментальных познаний, который действительно может обеспечить подготовку учащихся к будущей профессиональной деятельности в различных сферах.
2. Доступность и общеобразовательность. Включаемый материал должен быть посилен основной массе учащихся, отвечать уровню их умственного развития и имеющемуся запасу знаний, умений и навыков. Курс также должен содержать все наиболее значимые, общекультурные, общеобразовательные сведения из соответствующих разделов науки информатики.
Школьный курс информатики, с одной стороны, должен быть современным, а с другой - быть элементарным и доступным для изучения. Совмещение этих двух во многом противоречивых требований является сложной задачей.
Содержание курса информатики складывается сложно и противоречиво. Оно должно соответствовать социальному заказу общества в каждый данный момент его развития. Современное информационное общество выдвигает перед школой задачу формирования у подрастающего поколения информатической компетентности. Понятие информатической компетентности достаточно широко и включает в себя несколько составляющих: моти-вационную, социальную когнитивную, технологическую и др. Когнитивная составляющая курса информатики направлена на развитие у детей внимания, воображения, памяти, речи, мышления, познавательных способностей. Поэтому при определении содержания курса следует исходить из того, что информатика обладает большой способностью формирования этих сфер личности и, в особенности, мышления школьников. Общество нуждается в том, чтобы вступающие в жизнь молодые люди обладали навыками использования современных информационных технологий. Все это требует дальнейших исследований и обобщения передового педагогического опыта.
3. Машинный и безмашинный варианты курса информатики
Первая программа курса ОИВТ 1985 года содержала три базовых понятия: информация, алгоритм, ЭВМ. Эти понятия определяли обязательный для усвоения учащимися объём теоретической подготовки. Содержание обучения складывалось на основе компонентов алгоритмической культуры и, затем, компьютерной грамотности учащихся. Курс ОИВТ предназначался для изучения в двух старших классах - в девятом и десятом. В 9 классе отводилось 34 часа (1 час в неделю), а в 10 классе содержание курса дифференцировалось на два варианта - полный и краткий. Полный курс в 68 часов был рассчитан для школ, располагающих вычислительными машинами или имеющими возможность проводить занятия со школьниками на вычислительном центре. Краткий курс объёмом 34 часа предназначался для школ, не имеющих возможности проводить занятия с применением ЭВМ. Таким образом, сразу были предусмотрено 2 варианта - машинный и безмашинный. Но в безмашинном варианте планировались экскурсии объёмом 4 часа на вычислительный центр или предприятия, использующие ЭВМ.
Однако реальное состояние оснащения ЭВМ тогдашних школ и готовности учительских кадров привели к тому, что курс волей-неволей был изначально ориентирован на безмашинный вариант обучения. Большая часть учебного времени отводилась на алгоритмизацию и программирование, через которые преимущественно и рассматривалось общеобразовательное значение предмета информатики.
Первый собственно машинный вариант курса ОИВТ был разработан в 1986 году в объёме 102 часа для двух старших классов. В нем на знакомство с ЭВМ и решение задач на ЭВМ отводилось 48 часов. В то же время существенного отличия от безмашинного варианта не было. Но, тем не менее, курс был ориентирован на обучение информатике в условиях активной работы учащихся с ЭВМ в школьном кабинете вычислительной техники (в это время начались первые поставки в школы персональных компьютеров). Курс был достаточно быстро сопровожден соответствующим программным обеспечением: операционной системой, файловой системой, текстовым редактором. Были разработаны прикладные программы учебного назначения, которые быстро стали неотъемлемым компонентом методической системы преподавателя информатики. Предполагалась постоянная работа школьников с ЭВМ на каждом уроке в кабинете информатики. Было предложено три вида организационного использования кабинета вычислительной техники - проведение демонстраций на компьютере, выполнение фронтальных лабораторных работ и практикума.
Безмашинный вариант сопровождался несколькими учебными пособиями, например, учебники А.Г. Кушнирен-ко с соавторами в то время получили широкое распространение. Тем не менее, и машинный вариант во многом продолжал линию на алгоритмизацию и программирование, и меньше содержал фундаментальные основы информатики.
В 1990 годы с поступлением компьютеров в большинстве школ курс информатики начал преподаваться в машинном варианте, а основное внимание учителя стали уделять освоению приемов работы на компьютере и информационных технологий. Однако следует отметить, что реалии третьего десятилетия преподавания информатики показывают наличие в настоящее время безмашинного варианта или большой его доли в значительном числе школ, не только сельских, но и городских. Преподавание в начальной школе также ориентировано, в основном, на безмашинное изучение информатики, чему есть некоторое объяснение - время работы на компьютере для учащихся начальной школы не должно превышать 15 минут. Поэтому учебники информатики для них содержат лишь небольшую долю собственно компьютерного компонента.
Вопросы для самоконтроля:
1 Аспекты курса Информатики.
2. Какие вопросы охватывает основные содержательные линии курса?
Рекомендуемая литература:
1. Бочкин А.И. Методика преподавания информатики: Учебное пособие. –М.: Высш. Шк., 1998.
2. Лапчик М.П., Семакин И., Хеннер Е.К. Методика преподавания информатики: Учебное пособие. –М.: Академия, 2001
3. Софронова Н.В. «Теория и методика обучения информатике», Москва «Высшая школа», 2004г.