Исходное уравнение теплового баланса
В основу теплового расчета рекуперативных теплообменных аппаратов положены уравнения теплового баланса и обобщенные уравнения теплопередачи. Уравнение теплового баланса теплообменных аппаратов формулируется следующим образом: количество теплоты в единицу времени (за вычетом тепловых потерь), отданное нагревающим теплоносителем, равно количеству теплоты, воспринятой нагреваемым теплоносителем, и равно количеству теплоты, переданного через стенку:
(2.1.)
где ; – полные (расходные) теплоемкости соответственно нагревающего и нагреваемого потоков (Вт/°С), называемые также водяными эквивалентами теплоносителей; , – изменение температуры нагревающего и нагреваемого потоков; – коэффициент эффективности теплообменного аппарата; , – расходы теплоносителей в единицу времени ( кг/с); , – средние удельные теплоемкости при постоянном давлении теплоносителей, Дж/(кг·К); – средняя разность температур теплоносителей, называемая обычно среднелогарфмическим температурным напором (°С); –водяной эквивалент поверхности теплопередачи, (Вт/К), состоящий из произведения коэффициента теплопередачи k (Вт/м2К) и площади теплопередачи Н (м2),обычно приравниваемую к площади поверхности самого аппарата, хотя строго формально это разные величины.
Уравнение теплового баланса теплообменного аппарата (2.1.) в зависимости от его назначения, конструктивного оформления может изменяться, но остается неизменным сформулированное равенство теплоты.
Формально в уравнении (2.1.) присутствует описание двух теплоносителей - горячего и холодного, однако для большинства аппаратов, за исключением АВО, необходимо было бы учесть потери тепла в третий теплоноситель, а именно - в окружающую среду, т.е. наружный воздух. Поэтому в уравнение и введен коэффициент эффективности теплообменного аппарата, который для различных типов аппаратов обычно определен экспериментально и нормирован. Его можно уменьшить путем нанесения теплоизолирующего слоя на наружную поверхность аппарата.
При отсутствии тепловых потерь ( =1) из уравнения теплового баланса (2.1.) следует, что изменения температуры однофазных жидкостей обратно пропорционально величинам и .
Это соотношение действительно как для всей поверхности, так и для бесконечно малых ее элементов.
Существуют два вида теплового расчета теплообменных аппаратов: конструктивный (I рода) и поверочный (II рода).
В теплотехнических расчетах I рода, проводящихся чаще всего при проектировании, известны начальные и конечные температуры потоков , и , , известны или подсчитывают значения величин и обоих потоков; требуется определить комплекс kH, а затем величину площади теплообменного аппарата H. Эти расчеты проводятся в определенной последовательности.
1. По уравнению теплового баланса (2.1) определяется количество передаваемой теплоты в единицу времени (мощность теплообменного аппарата) .
2. Выбирается схема теплообмена проектируемого теплообменного аппарата (прямоток, противоток и др.).
3. Определяется средняя разность температур в зависимости от значений начальных и конечных температур потоков и принятой схемы теплообмена.
4. Вычисляется комплекс .
5. Далее расчеты могут быть проведены двумя путями:
5.1.Вычисляется или выбирается по оценке коэффициент тепло
передачи ; затем определяются поверхность теплопередачи и основные размеры теплообменного аппарата (D-диаметр трубок, L-их длинаи др.);
5.1.Осуществляется обработка данных теплотехнического испытания теплообменного аппарата, а именно, выбирается из каталога стандартный аппарат с известной площадью и по известному значению Нопределяется k.В теплотехнических расчетах II рода известны начальные температуры потоков , , известны или подсчитываются величины , , ; требуется определить конечные температуры потоков , . Последовательность расчетов II рода следующая:
определяется количество передаваемой теплоты в единицу времени в зависимости от значений начальных температур потоков, значений , , и схемы теплообмена;
вычисляются конечные температуры потоков из уравнения теплового баланса (2.1).
; и .
Трудности в теплотехнических расчетах теплообменных аппаратов сводятся либо к определению средней разности температур (в расчетах первого рода), либо к определению количества передаваемой теплоты (в расчетах второго рода). Основной проблемой, как правило, является определение коэффициента теплопередачи, т.к. в него входит внешний и внутренний коэффициенты теплоотдачи и термическое сопротивление стенки, разделяющей теплоносители.