Минералы коры выветривания
Процесс выветривания – типично экзогенное явление, приводящее к образованию тонкодисперсных минеральных образований, которые возникают в результате сложных реакций с O2, CO2, воздухом и H2O, а также в процессе жизнедеятельности микроорганизмов. Все эти реакции приводят к разложению минералов до кашеобразного (пылеобразного) состояния. В первую очередь разлагаются те минералы, которые содержат в своем составе элементы в низших степенях валентности (Fe2+ в сидерите и пироксене, S2+ в сульфидах, др.), или элемент, способные давать с СО2 легкорастворимые бикарбонаты (например, Na и К в плагиоклазе, Mg2+ в оливине, серпентине и др.). При окислении происходит гидролиз растворимых солей с выпадением гидроокислов сильно поляризующих катионов с малыми размерами ионных радиусов (Fe3+, Al3+, Si4+, Mn4+ и др.).
Состав накапливающихся в коре выветривания минералов в первую очередь зависит от исходного состава пород и руд. При этом химически стойкие минералы не разрушаются, а механически накапливаются в коре выветривания, а при размыве переносятся и скапливаются в россыпях. К устойчивым минералам относятся: кварц, магнетит, гематит, корунд, шпинель, хромшпинелиды, ильменит, рутил, касситерит, апатит, монацит, шеелит, циркон, топаз, турмалин, дистен, андалузит, киноварь, самородное золото, платиноиды, алмаз и др.
Наиболее интенсивные процессы химического разложения минералов наблюдаются в зоне выветривания сульфидных руд. Характерным является то, что сульфиды при окислении сначала переходят в соли серной кислоты:
FeS→ FeSO4, PbS→ PbSO4 и др. Происходит перенос металлов. Но при этом надо учитывать, что сульфаты различных металлов растворяются по-разному. Разные типы сульфидных месторождений будут содержать в зоне окисления различный набор минералов.
В медно-сульфидных месторождениях богатых притом, халькопиритом и другими сульфидами меди, в зоне окисления образуются нерастворимые гидроксиды железа – лимонит, гётит (железная шляпа). Медь же в виде легкорастворимого сульфата мигрирует к уровню грунтовых вод. Следовательно зона окисления сильно обедняется медью. Наоборот, в зоне вторичного сульфидного обогащения происходит накопление меди в рудах за счет образования вторичных, богатых медью сульфидов – ковеллина, халькозина, иногда борнита, возникших на месте первичных сульфидов в результате реакций их с медьсодержащими растворами. Таким образом, если в железной шляпе наблюдаются хотя бы признаки кислородных соединений меди – малахита, азурита, хризоколлы и др., то можно быть уверенным в том, что ниже уровня грунтовых вод будет располагаться обогащенная медью зона вторичных сульфидов. В районах с жарким и сухим климатом при малом выпадении осадков окисление руд происходит медленнее.
В случае окисления бедных серой халькозиновых руд образуются куприт и самородная медь. Иногда сульфаты меди – халькантит, брошантит, силикаты меди – диоптаз (ашарит), хризоколла. В жарком и сухом климате образуются ярозит, мелантерит.
В свинцово-цинковых месторождениях, богатых сфалеритом и галенитом, кроме лимонита, который образуется за счет вездесущего пирита, присутствуют вторичные минералы свинца: англезит (PbSO4) образуется за счет галенита, иногда тонкой пленкой обволакивая остатки чистого галенита. Иногда образуется церуссит, пироморфит, ванадинит, крокоит и др. Крупноразмерный ион свинца дает устойчивые соединения с крупными комплексными анионами – SO4, PO4, AsO4, VO4, CrO4 и др.
Цинк ведет себя по-другому – он в виде растворимого в воде сульфата почти полностью выносится из зоны окисления. Если в нижних горизонтах или боковых зонах встречаются известняки, то образуются смитсонитовые руды Zn(CO3). Если нижние горизонты и боковые породы сложены сланцами или другими неактивными в химическом отношении породами, то цинк с растворами достигает грунтовых вод и уходит за пределы месторождения. Иногда в зоне окисления встречаются силикаты Zn – каламин, виллемит, изредка фосфаты, арсенаты и др. Таким образом свинец и цинк тесно связанные друг с другом в эндогенном минералообразовании в виде сульфидов, в коре выветривания разобщаются.
По иному ведет себя и серебро, часто присутствующее в виде примеси в галените. В нижних частях зоны окисления оно встречается в самородном виде вместе с аргентитом. В странах с жарким и сухим климатом переходит в галоидные соединения – кераргирит и др.
Легко разрушаются карбонаты двухвалентных железа и марганца, образуя гидроксиды. Также легко разрушаются и силикаты марганца (родонит, манганит, браунит и др.), они также переходят в гидроксиды четырехвалентного марганца: пиролюзит и псиломеланы, образуя марганцевые шляпы..
За счет выветривания силикатных пород могут возникать новые месторождения, имеющие площадное значение. На месте кислых пород богатых глиноземом и бедных железом в условиях умеренного климата возникают каолинитовые залежи, а при латеритном выветривании в условиях влажного и жаркого климата – бокситы (гидроксиды алюминия). В условиях интенсивного выветривания основных и ультраосновных пород разлагаются и силикаты железа (серпентины, хлориты, гранаты, пироксены, амфиболы и др.) с образованием рыхлых бурых железняков. Если присутствовало много силикатов с Ni, Co, т образуются никелевые силикатные руды, содержащие ревдинскит, гарниерит, галлуазит, никель- и кобальтсодержащие гидросиликаты марганца – асболаны и др. (месторождения Южного Урала). Кремнезем, высвобождаясь из силикатов, переходит в коллоидный раствор, частично дает новые минералы в виде нонтронита, галлуазита (ниже зоны железной шляпы), а частично выпадает в виде халцедона и опала.
Следует сказать, что в корах выветривания, могут образовываться очень разнообразные минералы: гипс, арагонит, кальцит, ярозит, самородная сера (при разложении гипса), различные фосфаты, а в сухих районах в виде выцветов – селитра, квасцы и другие легкорастворимые сульфаты (Чили), карбонаты и галоидные соединения различных элементов.