Рассмотреть обитателей аквариума и составить схему круговорота углерода в нем. Объяснить, почему необходимо систематически подкармливать рыб
1.
1. Пластический обмен – совокупность реакций синтеза органических веществ в клетке с использованием энергии. Синтез белков из аминокислот, жиров из глицерина и жирных кислот – примеры биосинтеза в клетке.
2. Значение пластического обмена: обеспечение клетки строительным материалом для создания клеточных структур; органическими веществами, которые используются в энергетическом обмене.
3. Фотосинтез и биосинтез белков – примеры пластического об
мена. Роль ядра, рибосом, эндоплазматической сети в биосинтезе белка. Ферментативный характер реакций биосинтеза, участие в нем разнообразных ферментов. Молекулы АТФ – источник энергии для биосинтеза.
4. Матричный характер реакций синтеза белков и нуклеиновых кислот в клетке. Последовательность нуклеотидов в молекуле ДНК – матричная основа для расположения нуклеотидов в молекуле иРНК, а последовательность нуклеотидов в молекуле иРНК – матричная основа для расположения аминокислот в молекуле белка в определенном порядке.
5. Этапы биосинтеза белка:
1) транскрипция – переписывание в ядре информации о структуре белка с ДНК на иРНК. Значение дополнительности азотистых оснований в этом процессе. Молекула иРНК – копия одного гена, содержащего информацию о структуре одного белка. Генетический код – последовательность нуклеотидов в молекуле ДНК, которая определяет последовательность аминокислот в молекуле белка. Кодирование аминокислот триплетами – тремя рядом расположенными нуклеотидами;
2) перемещение иРНК из ядра к рибосоме, нанизывание рибосом на иРНК. Расположение в месте контакта иРНК и рибосомы двух триплетов, к одному из которых подходит тРНК с аминокислотой. Дополнительность нуклеотидов иРНК и тРНК – основа взаимодействия аминокислот. Передвижение рибосомы на новый участок иРНК, содержащий два триплета,
и повторение всех процессов: доставка новых аминокислот, их соединение с фрагментом молекулы белка. Движение рибосомы до конца иРНК и завершение синтеза всей молекулы белка.
6. Высокая скорость реакций биосинтеза белка в клетке. Согласованность процессов в ядре, цитоплазме, рибосомах – доказательство целостности клетки. Сходство процесса биосинтеза белка в клетках растений, животных и др. – доказательство их родства, единства органического мира.
2.
1. Наследственная изменчивость – свойство организмов приобретать новые признаки в процессе онтогенеза и передавать их потомству. Виды наследственной изменчивости – мутационная и комби-нативная. Материальные основы наследственной изменчивости – изменение генов, генотипа; ее индивидуальный характер (проявление у отдельных особей), необратимость, передача по наследству.
2. Комбинативная изменчивость – результат перекомбинации генов при скрещивании организмов. Причины перекомбинации генов – перекрест и обмен участками гомологичных хромосом, случайный характер распределения хромосом между дочерними клетками в ходе мейоза, случайное сочетание гамет при оплодотворении, взаимодействие генов. Пример: появление дрозофил с темным телом и длинными крыльями при скрещивании серых дрозофил с длинными крыльями с темными дрозофилами с короткими крыльями.
3. Мутационная изменчивость –
внезапное, случайное возникновение стойких изменений генетического аппарата, вызывающее появление новых признаков в фенотипе. Примеры: шестипалая рука, альбиносы. Виды мутаций – генные (изменение последовательности нуклеотидов в гене) и хромосомные (увеличение или уменьшение числа хромосом, потеря их части). Последствия генных и хромосомных мутаций. – синтез новых белков, а значит, и появление новых признаков у организмов, которые чаще всего ведут к снижению жизнеспособности, а иногда и к смерти.
4. Полиплоидия – наследственная изменчивость, вызванная кратным увеличением числа хромосом. При этом увеличиваются размеры, масса, число семян и плодов у растения. Причины – нарушение процессов митоза или мейоза, нерасхождение хромосом в дочерние клетки. Широкое распространение в природе полиплоидии у растений. Получение поли-плоидных сортов растений, их высокая урожайность.
5. Соматические мутации – изменение генов или хромосом в соматических клетках, возникновение изменений в той части организма, которая развилась из мутировавших клеток. Соматические мутации потомству не передаются, они исчезают с гибелью организма. Пример – белая прядь волос у человека.
3.
Растения поглощают углекислый газ из окружающей среды и
используют его углерод в процессе фотосинтеза на создание органических веществ. Их используют как сами растения, так и животные (рыбы, моллюски). Они питаются ими, создают из них вещества, свойственные организму. Органические вещества организмы используют в процессе дыхания, при этом в окружающую среду выделяется углекислый газ. Расщепление мертвых остатков микроорганизмами сопровождается выделением в атмосферу углекислого газа. Так происходит круговорот углерода. В аквариуме масса пищи, а значит, и содержание углерода не соответствует правилу экологической пирамиды (масса растений должна в 1000 раз превышать массу животных), поэтому рыб приходится подкармливать.
Билет № 10