Регуляция экспрессии генов на уровне транскрипции у эукариот

Эукариотические факторы транскрипции реализуют механизм регуляции экспрессии генов комбинаторного типа. Молекулы факторов транскрипции обладают консервативными доменами, которые дают им возможность осуществлять высокоспецифические белок-белковые и белково-нуклеиновые взаимодействия. In vivo происходит объединение факторов транскрипции и других регуляторных белков в большие регуляторные комплексы. Каждое новое сочетание факторов придает комплексу уникальные регуляторные свойства, обеспечивая изменение специфичности его взаимодействия с регуляторными последовательностями ДНК и регуляторными белками аппарата транскрипции.

Уникальна способность эукариот использовать для регуляции транскрипции генов изменения структуры хроматина. С помощью таких механизмов осуществляется репрессия и дерепрессия генов во время дифференцировки клеток, и поддерживается соответствующее функциональное состояние отдельных генов, их больших массивов и целых хромосом на протяжении всей жизни организма. Перестройки хроматина в окрестностях регуляторных участков генов происходят и в связи с более тонкой регуляцией их транскрипции.

В процессе синтеза и после его завершения первичный транскрипт подвергается посттранскрипционным модификациям и процессингу. Таким образом, генетической информации, заключенной в конкретном гене, недостаточно для полноценной экспрессии, и чтобы ген правильно функционировал, требуется координированная работа дополнительных генов, многие из которых активны не вблизи регулируемых генов, а в других тканях, удаленных от клеток- мишеней. Для осуществления такой передачи регуляторных сигналов на большие расстояния в организме присутствуют специальные системы, осуществляющие генерацию, перенос и специфическое распознавание сигналов клетками.

Регуляция на уровне инициации транскрипции у прокариот

Активность многих генов прокариот регулируется с помощью белковых факторов, взаимодействующих с регуляторными участками промоторов генов. При этом происходят как активация транскрипции генов-активаторами , осуществляющими позитивную регуляцию транскрипции, так и подавление- репрессорамисчитывания генетической информации РНК- полимеразами. Регуляцию, связанную с подавлением транскрипции, называют негативной .

Механизмы стимулирования инициации транскрипции могут рассматриваться с двух точек зрения - кинетической и структурной. Активация промоторов путем образования открытых комплексов является лимитирующей стадией на пути активации транскрипции в целом, поэтому действие активаторов может быть охарактеризовано по изменению значений кинетических параметров реакций, происходящих на разных этапах активации.

Многие активаторы транскрипции, в том числе и Crp-cAMP, сгибают молекулу ДНК после взаимодействия с ней, причем центр изгиба находится в сайте связывания активатора. С использованием мутантных белков было установлено, что изгибание ДНК и связывание активаторов с ДНК еще не обеспечивают активацию транскрипции.

Необходимым условием активации является наличие контакта между специфическими областями поверхностей молекул активатора и РНК-полимеразы, часто с ее альфа-субъединицами . Следствием образования контактов между активаторами и холоферментом РНК-полимеразыявляется синергизм в связывании обоих белков с соответствующими промоторами. Мутации в сайтах связывания активаторов или в промоторе могут предотвращать активацию транскрипции путем изменения конформации молекулы связанного активатора или контактного участка на РНК-полимеразе.

Последовательности нуклеотидов промоторных участков генов, с которыми взаимодействуют молекулы репрессора, получили название операторов . Во многих случаях репрессор связывается с оператором только в присутствии низкомолекулярного лиганда, специфически взаимодействующего с репрессором. Такие низкомолекулярные эффекторы получили названиекорепрессоров . Они часто требуются для функционирования белков-активаторов транскрипции.

Простейший механизм репрессии заключается в стерическом блокировании связывания РНК-полимеразы с промотором. Это происходит в том случае, если последовательности нуклеотидов мест посадки РНК-полимеразы на промотор и репрессора на оператор перекрываются.

Некоторые бактериальные белки-репрессоры могут оказывать негативное действие на этапы инициации, происходящие после связывания РНК-полимеразы с промотором.

Распространенным механизмом активации транскрипции с помощью белков-активаторов является облегчение ее инициации РНК- полимеразой после образования контакта между ферментом и белком- активатором, связанными с регуляторной областью промотора, что сопровождается конформационными изменениями РНК-полимеразы. У бактерий имеются белки-регуляторы, обладающие активностью как репрессора, так и активатора транскрипции, например, репрессор cI фага лямбда.

Низкомолекулярные эффекторы могут изменять активность РНК- полимеразы не только через белки-регуляторы, но и непосредственно при взаимодействии с ферментом. С помощьюгуанозинтетрафосфата (ppGpp) в клетках E. coli осуществляется координация экспрессии генов рибосомных РНК (рРНК) и белков.

Некоторые регуляторные элементы бактерий, участвующие в активации транскрипции, так же как и энхансеры эукариот, могут располагаться на большом расстоянии (нескольких сотен нуклеотидов) от промоторов, на которые они действуют. В этом случае контакт активатора с РНК-полимеразой обеспечивается благодаря выпетливанию участка ДНК, расположенного между данными регуляторными элементами, что приводит к пространственному сближению двух белков.

Были получены доказательства изменения структуры ДНК в окрестностях промоторов под действием белков-активаторов для активации транскрипции.

20Биотехнология представляет собой область знаний, которая возникла и оформилась на стыке микробиологии, молекулярной биологии, генной инженерии, иммунологии, химической технологии и ряда других наук. Рождение биотехнологии обусловлено потребностями общества в новых, более дешевых продуктах для народного хозяйства, в том числе для медицины и ветеринарии, а также принципиально новых технологиях. Целью биотехнологии являются получение продуктов из биологических объектов или с их применением, а также воспроизводство биоэффектов, не встречающихся в природе. В качестве биологических объектов чаще всего используются одноклеточные микроорганизмы, животные и растительные клетки, а также организм животных, человека или растений. Выбор этих объектов обусловлен следующими причинами.
Клетки являются своего рода биофабриками, вырабатывающими в процессе жизнедеятельности разнообразные ценные продукты: белки, жиры, углеводы, витамины, аминокислоты, антибиотики, гормоны, антитела, антигены, ферменты, спирты и т.д. Многие из этих продуктов, крайне необходимых в жизни человека, пока недоступны для получения небиотехнологическими способами.
Впервые термин «биотехнология» применил венгерский инженер Карл Эреки в 1917 году. в 1814 году петербургский академик К. С. Кирхгоф (биография) открыл явление биологического катализа и пытался биокаталитическим путём получить сахар из доступного отечественного сырья (до середины XIX века сахар получали только из сахарного тростника). В 1891 году в США японский биохимик Дз. Такамине получил первый патентна использование ферментных препаратов в промышленных целях: учёный предложил применить диастазу для осахаривания растительных отходов.

Генетическая инженерия является сердцевиной биотехнологии. Она по существу сводится к генетической рекомбинации, т.е. обмену генами между двумя хромосомами, которая приводит к возникновению клеток или организмов с двумя и более наследственными детерминантами (генами), по которым родители различались между собой. Метод рекомбинации in vitro или генетической инженерии заключается в выделении или синтезе ДНК из отличающихся друг от друга организмов или клеток, получении гибридных молекул ДНК, введении рекомбинантных (гибридных) молекул в живые клетки, создании условий для экспрессии и секреции продуктов, кодируемых генами.

Генно-инженерная технология использует всё разнообразие сложных и тонких методов современной генетики, позволяющих работать с ничтожными количествами генетического материала. Основные этапы и операции генной инженерии включают: выделение из клеток ДНК, содержащей нужный ген; разрезание ДНК на мелкие фрагменты с помощью специальных ферментов; соединение фрагментов ДНК с т. н. векторами, обеспечивающими проникновение в клетку; клонирование (размножение) нужного гена; создание рекомбинантной (гибридной) ДНК из участков ДНК (генов) разного происхождения; введение (микроинъекция) генетического материала в культивируемые клетки организма-хозяина или в его яйцеклетку.

Большинство учёных связывает с развитием генной инженерии решение таких сложных проблем, как обеспечение человечества продовольствием и энергией, успешную борьбу с болезнями и с загрязнением окружающей среды.

21. Временная организация клетки. Клточный цикл, его возможные направления и периодизация.

Время существования клетки от ее образования до следующего деления или смерти называют жизненным циклом клетки (ЖЦК). В ЖЦК эукариотических клеток многоклеточного организма можно выделить несколько периодов (фаз), каждый из которых характеризуется определенными морфологическими и функциональными особенностями:

- фаза размножения и роста

- фаза дифференцировки

- фаза нормальной активности

- фаза старения и смерти клетки.

В жизненном цикле клетки можно также выделить митотический цикл, включающий подготовку клетки к делению и само деление.
Основные принципы организации ЖЦК:
1. Продолжительность клеточного цикла различна в зависимости от типа клеток.
2. В нормальных клетках каждая стадия клеточного цикла зависит от правильного завершения предыдущей стадии( осуществляют ферментативные и белковые системы клеток)..
3. Усиление дифференцировки клеток сопровождается снижением их митотической активности.

Митоз – способ деления генетически и морфологически неизмененных клеток..
1. Постмитотический (пресинтетический) период характеризуется ростом клетки, увеличением ее объема. В этой стадии следует выделить два взаимосвязанных явления:

- усиление процессов обмена веществ

- увеличение количества органоидов клетки

Варианты перехода в следующие стадии клеточного цикла:
1. Клетка вступает в митотический цикл, обязательным условием которого является репликация ДНК. Начинается синтетический период интерфазы.
2. Клетка прекращает рост и переходит в фазу дифференцировки и нормальной активности.

По степени специализации клетки можно разделить на недифференцированные и дифференцированные. Но только дифференцированные клетки могут полноценно выполнять свои функции. Поэтому любое нарушение дифференцировки приводит к нарушению или не выполнению.

Нормальное функционирование в составе органа – это основной период жизненного цикла клеток. Но неизбежным завершением ЖЦК является переход в фазу старения и гибели

Синтетический период (S-период)

Основной особенностью периода является репликация ДНК. Процесс репликации требует совместного действия многих белков:
1) ДНК-геликаза 2) дестабилизирующие белки (SSB – белки3)ДНК-полимераза 4)ДНК-лигазы 5) ДНК-топоизомеразы
Основное значение репликации ДНК – удвоение наследственной информации, которая в последующем митозе будет равномерно распределена между дочерними клетками.

Механизмы контроля репликации стабильности ДНК.

1. Ферментативный контроль осуществляет ДНК-полимераза.

2. Репаративный контроль осуществляется особыми ферментативными системами на всех стадиях ЖЦК.

После полного завершения репликации и проверки правильности удвоения ДНК клетка переходит в следующий период – постсинтетический (премитотический, G2)

Особенности постсинтетического периода:

- накопление АТФ

- образование белков веретена деления

- синтез в клетке М-стимулирующего фактора.

Митоз – непрямое деление эукариотической клетки, в результате которого образуются клетки идентичные по кариотипу и генотипу.
Кариотип – набор хромосом клетки. Генотип – совокупность генов диплоидной клетки.

Термин «Соматические мутации» - мутации связанные с нарушением наследственного аппарата диплоидных клеток. При этом уровень нарушения может быть различным: генный, хромосомный, геномный.

Регуляция митотического цикла.

Изучение механизмов регуляции митозов является одной из важнейших проблем современной биологии, поскольку митозы лежат в основе роста организмов, регенерации тканей, нарушение митотической активности – основной механизм возникновения опухолей.

В регуляции митотического цикла участвуют различные факторы, их сбалансированное взаимодействие приводит к нормальному протеканию клеточного цикла.

В регуляции периодов интерфазы принимают участие ранее упомянутые факторы: активаторы S-периода, М-стимулирующий и М-задерживающий факторы, циклины.

Старение и гибель клеток. После определенного периода нормального функционирования у клетки начинается период старения, который морфологически проявляется:

- уменьшением объема клетки

- увеличением содержания крупных лизосом

- накоплением пигментных и жировых включений

- появлением вакуолей в цитоплазме и ядре

Гибель клетки – завершающий этап клеточного цикла

При гибели клетки можно выделить два различных механизма ее развития: некроз и апоптоз.

22. Деление клетки. Понятие митотической активности. Нарушения митоза.

Деление клетки — процесс образования из родительской клетки двух и более дочерних клеток

Существует два способа деления ядра эукариотических клеток: митоз и мейоз.

Мейоз - это особый способ деления клеток, в результате которого происходит редукция (уменьшение) числа хромосом вдвое. С помощью мейоза образуются гаметы. В результате редукции споры и половые клетки хромосомного набора получают в каждую гаплоидную спору и гамету по одной хромосоме из каждой пары хромосом, имеющихся в данной диплоидной клетке. В ходе дальнейшего процесса оплодотворения (слияния гамет) организм нового поколения получит опять диплоидный набор хромосом, т. е. кариотип организмов данного вида в ряду поколений остается постоянным.

Митоз —(реже: кариокинез или непрямое деление) — деление ядра эукариотической клетки с сохранением числа хромосом. В отличие от мейоза, митотическое деление протекает без осложнений в клетках любой плоидности, поскольку не включает как необходимый этап, конъюгацию, хромосом в профазе. Митоз (от греч.Mitos- нить) непрямое деление, - основной способ деления эукариотических клеток. Митоз - это деление ядра, которое приводит к образованию двух дочерних ядер, в каждом из которых имеется точно такой же набор хромосом, что и в родительском ядре. Вслед за делением ядра обычно следует деление самой клетки, поэтому часто термином - «митоз» обозначают деление клетки целиком.

МИТОТИЧЕСКАЯ АКТИВНОСТЬ (наличие делящихся клеток) ткани подразделяются на пролиферирующие (где есть размножение клеток) и непролиферирующие, или дифференцированные (где клетки приобрели окончательную специализацию и утратили способность к делению). Высокую митотическую активность клеток в ткани связывают с накоплением в ней гликогена (Bullough, 1949). При понижении количества гликогена интенсивность деления клеток снижается. Л. В. Суворова (1955) нашла, что у незрело-рождающихся животных на ранних этапах постнатального развития этот эффект отсутствует. В этот период в тканях как раз преобладают процессы гликолиза и низка активность окислительных ферментов.

Нарушения митоза

Правильное течение митоза может быть нарушено различными внешними воздействиями: высокими дозами радиации, некоторыми химическими веществами. Например, под действием рентгеновых лучей ДНК хромосом может разорваться. Хромосомы в таком случае тоже разрываются. При этом могут возникнуть хромосомы без центромерного района. Такие хромосомы лишены способности двигаться в прометафазе и анафазе. В зависимости от того, в каком месте ядра бесцентромерная хромосома находилась накануне деления,будет складываться ее дальнейшая судьба. Если хромосома была смещена к одному из полюсов клетки, то при формировании дочерних клеток она может целиком включиться в одну из них, т. е. обе сестринские хроматиды окажутся в одном ядре. Одни хромосомы начинают двигаться быстрее, другие отстают. Отставшие хромосомы могут не включиться в формирующиеся дочерние ядра. Иногда в делящейся клетке образуется не два, а три или четыре полюса, что ведет к возникновению соответственно трех или четырех дочерних клеток. При таком делении нарушается весь слаженный механизм распределения хромосом. Метафазная хромосома, состоящая из двух сестринских хроматид, может взаимодействовать одновременно только с двумя полюсами. Если полюсов больше, то каждая хромосома вынуждена "выбирать", с какими двумя полюсами из трех или четырех ей взаимодействовать. Этот выбор совершается случайно. В результате каждая дочерняя клетка получает не весь набор хромосом, а только его часть. Клетки, получившие неполный набор хромосом, как правило, оказываются нежизнеспособными и погибают. Изучение нарушений митоза, вызванных различными факторами, с одной стороны, помогает лучше понять митотические процессы, с другой - позволяет устанавливать механизмы повреждающего действия этих факторов и, следовательно, создает условия для целенаправленного поиска методов устранения таких нарушений.

23. Предмет, задачи и методы генетики.Закономерности развития при моногибридном скрещивании.Первый и второй законы Менделя. Менделирующие признаки.

Генетика—-наука о наследственности и изменчивости живых организмов и методах управления ими. В ее основу легли закономерности наследственности, установленные выдающимся чешским ученым Грегором Менделем (1822—1884) при скрещивании различных сортов гороха.

Наследственность — это неотъемлемое свойство всех живых существ сохранять и передавать в ряду поколений характерные для вида или популяции особенности строения, функционирования и развития. Наследственность обеспечивает постоянство и многообразие форм жизни и лежит в основе передачи наследственных задатков, ответственных за формирование признаков и свойств организма

Изменчивость — способность организмов в процессе онтогенеза приобретать новые признаки и терять старые. Изменчивость выражается в том, что в любом поколении отдельные особи чем-то отличаются и друг от друга, и от своих родителей. Причиной этого является то, что признаки и свойства любого организма есть результат взаимодействия двух факторов: наследственной информации, полученной от родителей, и конкретных условий внешней среды, в которых шло индивидуальное развитие каждой особи.

Таким образом, наследственность, будучи консервативной, обеспечивает сохранение признаков и свойств организмов на протяжении многих поколений, а изменчивость обусловливает формирование новых признаков в результате изменения генетической информации или условий внешней среды.

Задачи: исследование-1) механизмов хранения и передачи генетической информации от родительских форм к дочерним; 2) механизма реализации этой информации в виде признаков и свойств организмов в процессе их индивидуального развития под контролем генов и влиянием условий внешней среды; 3) типов, причин и механизмов изменчивости всех живых существ; 4) взаимосвязи процессов наследственности, изменчивости и отбора как движущих факторов эволюции органического мира.

Генетика является также основой для решения ряда важнейших практических задач. К ним относятся: 1) выбор наиболее эффективных типов гибридизации и способов отбора; 2) управление развитием наследственных признаков с целью получения наиболее значимых для человека результатов; 3) искусственное получение наследственно измененных форм живых организмов; 4) разработка мероприятий по защите живой природы от вредных мутагенных воздействий различных факторов внешней среды и методов борьбы с наследственными болезнями человека, вредителями сельскохозяйственных растений и животных; 5) разработка методов генетической инженерии с целью получения высокоэффективных продуцентов биологически активных соединений, а также для создания принципиально новых технологий в селекции микроорганизмов, растений и животных.

Моногибридное скрещивание — тип скрещивания, при котором родительские особи отличаются друг от друга по одному изучаемому признаку, т. е. у них имеется различие только по одной паре аллелей. Классическим примером является скрещивание сортов гороха, отличающихся только цветом семян. Напомним, что аллелями называют различные состояния гена, определяющие различные проявления одного и того же признака. Один ген может находиться в двух аллельных вариантах (цвет семян гороха), трех (группы крови человека) и более. В чистых линиях все организмы имеют одинаковые аллели изучаемого гена.Также Моногибридным скрещиванием называют такое скрещивание, при котором прослеживают наследование только одной пары альтернативных признаков.


1. Первый закон- это закон единообразия гибридов первого поколения. Закон гласит, что при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, все первое поколение гибридов окажется единообразным и будет нести проявление признака одного из родителей.

2. Второй закон- закон расщепления признаков. При скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1

Менделирующие признаки определяются одним геном моногенно (от греч.monos-один) то есть когда проявление признака определяется взаимодействием аллельных генов, один из которых доминирует (подавляет) другой. Менделевские законы справедливы для аутосомных генов с полной пенетрантностью (от лат.penetrans-проникающий, достигающий) и постоянной экспрессивностью (степенью выраженности признака).Если гены локализованы в половых хромосомах (за исключением гомологичного участка в Х- и У-хромосомах), или в одной хромосоме сцеплено, или в ДНК органоидов, то результаты скрещивания не будут следовать законам Менделя.Общие законы наследственности одинаковы для всех эукариот. У человека также имеются менделирующие признаки, и для него характерны все типы их наследования: аутосомно-доминантный, аутосомно-рецессивный, сцепленный с половыми хромосомами (с гомологичным участком Х- и У-хромосом).

Типы наследования менделирующих признаков:

I. Аутосомно-доминантный тип наследования. По аутосомно-доминантному типу наследуются некоторые нормальные и патологические признаки:

1) белый локон над лбом; 2) волосы жесткие, прямые (ежик); 3) шерстистые волосы - короткие, легко секущиеся, курчавые, пышные; 4) кожа толстая; 5) способность свертывать язык в трубочку; 6) габсбургская губа - нижняя челюсть узкая, выступающая вперед, нижняя губа отвислая и полуоткрытый рот; 7) полидактилия; 8) синдактилия (от греч. syn - вместе)-сращение мягких или костных тканей фаланг двух или более пальцев; 9) брахидактилия (короткопалость) – недоразвитие дистальных фаланг пальцев; 10) арахнодактилия II. Аутосомно-рецессивный тип наследования. Если рецессивные гены локализованы в аутосомах, то проявиться они могут при браке двух гетерозигот или гомозигот по рецессивному аллелю. По аутосомно-рецессивному типу наследуются следующие признаки: 1)волосы мягкие, прямые; 2)кожа тонкая; 3)группа крови Rh-; 4)неощущение горечи вкуса фенилкарбамида; 5)неумение складывать язык в трубочку; 6)фенилкетонурия –признаки – судорожные синдромы, отставание в психическом развитии, импульсивность, возбудимость, агрессия); 7) 8)альбинизм.

24. Закономерности развития при ди- и полигибридном скрещивании.Третий закон Менделя.

При дигибридном скрещивании родительские организмы анализируются по двум парам альтернативных признаков. Мендель изучал такие признаки как окраску семян и их форму. При скрещивании гороха с желтыми и гладкими семенами с горохом, имеющим зеленые и морщинистые семена, в первом поколении все потомство оказалось однородным, проявились только доминантные признаки – желтый цвет и гладкая форма. Следовательно, как и при моногибридном скрещивании здесь имело место правило единообразия гибридов первого поколения или правило доминирования.

Р ♀ААВВ х ♂аавв

G (АВ) (ав)

F1 АаВв – желтые гладкие

Из этого скрещивания видно, что во втором поколении имелись не только особи с сочетанием признаков родителей, но и особи с новыми комбинациями признаков.

Кроме того, Мендель обнаружил, что каждая пара признаков (цвет и форма) дала расщепление приблизительно в отношении 3:1, то есть как при моногибридном скрещивании. Отсюда был сделан вывод, что каждая пара альтернативных признаков при ди- и полигибридном скрещивании наследуется независимо друг от друга.

Третье правило или третий закон Менделя формулируется следующим образом: при скрещивании гомозиготных особей отличающихся двумя (или более) парами альтернативных признаков, во втором поколении наблюдается независимое наследование и комбинирование признаков, если гены, определяющие их, расположены в различных гомологичных хромосомах.

Факторальная гипотеза указывает на то, что в клетках содержится фактор (ген), который и несет признак. Родители передают потомкам не признаки, а эти факторы.Гипотеза «чистоты гамет»: организм по каждому признаку несет два наследственных фактора (один от отца, второй от матери). Эти наследственные факторы, находясь в клетках, не сливаются друг с другом и при формировании гамет расходятся в разные гаметы.

Анализирующее скрещивание

Рецессивный аллель проявляется только в гомозиготном состоянии. Поэтому о генотипе организма проявляющего рецессивный признак можно судить по фенотипу.

Гомозиготная и гетерозиготная особи, проявляющие доминантные признаки по фенотипу неотличимы. Для определения генотипа производят анализирующее скрещивание и узнают генотип родителей по потомству.

Анализирующее скрещивание заключается в том, что особь, генотип которой не ясен, но должен быть выяснен скрещивается с рецессивной формой. Если от такого скрещивания все потомство окажется однородным, значит анализируемая особь гомозиготна, если же произойдет расщепление, то она гетерозиготна

При анализирующем скрещивании для потомства гетерозиготной особи характерно расщепление 1:1.

25. Множественный аллелизм. Наследование групп крови АВО и резус-фактора.

Множественный аллелизм

Развитие признака определяется двумя аллелями одного гена (А и а), которые занимают идентичные локусы гомологичных хромосом. Иногда ген имеет не два, а большее число аллелей, которые возникают в результате мутации. Многократное мутирование одного и того же гена образует серию множественных аллелей, а само явление называется явлением множественного аллелизма. Оно имеет широкое распространение: окраска шерсти у кроликов, цвет глаз у дрозофилы, система групп крови АВО у человека.

Имеются определенные закономерности множественного аллелизма: — каждый ген может иметь большое число аллелей; — любой аллель может возникнуть в результате прямой и обратной мутации любого члена серии множественных аллелей или от аллеля дикого типа; — в диплоидном организме могут одновременно находиться два любых аллеля из серии множественных аллелей;— аллели находятся в сложных доминантно-рецессивных отношениях между собой: один и тот же аллель может быть доминантным по отношению к одному аллелю и рецессивным по отношению к другому, а между иными аллелями доминирование может отсутствовать, и наблюдается кодоминирование и др.; — члены серии множественных аллелей наследуются так же, как и пара аллелей, т. е. наследование подчиняется менделевским закономерностям (кроме кодоминирования);— разные сочетания аллелей в генотипе обуславливают различные фенотипические проявления одного и того же признака;— серии аллелей увеличивают комбинатов ну ю изменчивость.

Наследование групп крови системы ABO

Примером множественного аллелизма у человека является наличие трех аллелей гена, определяющего наследование групп крови системы АВО. • система определяется тремя аллелями одного гена I (IA, 1в, 1°); ген I расположен в 9-й хромосоме: 9q34; • из всей серии аллелей одновременно в генотипе диплоидного организма находятся два аллеля (I°I0, IAIA, IAI°, 1в1в и др.); • аллели IA, 1в доминантны по отношению к аллелю 1° — полное доминирование, между собой аллели 1А и 1в — кодоминантны; • доминантный аллель гена может проявлять свое действие в гомо- (IAIA, IBIB) и гетерозиготном организмах (1А1°, 1в 1°), а рецессивный аллель гена — только в гомозиготном организме (1° 1°); • различные сочетания аллелей в генотипе дают разные фенотипы: 4 группы крови I (0), II (А), III (В), IV (АВ), которые различаются между собой антигенными свойствами эритроцитов. Антигены (агглютиногены) находятся на поверхности эритроцитов (гликокаликс); • особенностью системы является наличие в сыворотке крови спецефических антител (агглютининов), разноименных по отношению к собственным агглютиногенам (они одновременно находятся в крови); • разнообразие групп крови обеспечивает фенотипический полиморфизм в популяциях человека по данному признаку.

Ген I обладает 100% пенетрантностью.

Группы крови являются примером однозначной нормы реакции организма (группа крови не изменяется в течение жизни ни при каких изменениях среды).

Частота людей с резус-положительной принадлежностью – Rh(+), составляет 85%, остальные 15% являются резус-отрицательными – Rh(-). Если у резус-отрицательной женщины муж имеет резус-положительную принадлежность, то с высокой вероятностью ребенок окажется резус-положительный, и тогда может возникнуть резус-конфликт между плодом и матерью. В 15% подобных случаев после 7 недели, когда в крови плода появляются зрелые эритроциты, в крови беременных с Rh(-) могут начать вырабатываться специфические противорезусные антитела.

Наши рекомендации