Влияние тренировки на накопление в мышцах тех или иных видов белка
Вадим Протасенко: КАК РАСТУТ МЫШЦЫ?
Содержание белка в мышцах человека, на первый взгляд, не так велико – от 16% до 21% общей мышечной массы, но если учесть, что 72-80% мышечной массы приходится на воду, то становится ясно, что «сухая» ткань мышц на 75-80% состоит из белка. Из нескольких видов белка, главным образом актина и миозина, состоят миофибриллы – структуры мышечного волокна, выполняющие основную мышечную функцию – функцию сокращения. Цепочки таких белков, как десмин, дистрофин, спектрин и др. формируют каркас мышечных волокон. Белок является главным компонентом различных мембран, как внутриклеточных, так и мембран, составляющих оболочку мышечного волокна. Из белков состоит межклеточная соединительная ткань, связки и сухожилия мышц. Ферменты – вещества, обеспечивающие протекание в мышечной клетке всевозможных химических реакций, связанных с жизнедеятельностью мышц, – это суть тоже белки. Даже внутриклеточная жидкость (саркоплазма) по своей структуре больше напоминает гель, потому как в ней растворено большое количество белка, главным образом все тех же ферментов.
Несмотря на то, что человек получает белки с пищей, белки других живых организмов, потребляемые человеком, не используются напрямую для строительства тканей его тела. Весь поступающий в организм человека белок сначала расщепляется в пищеварительной системе на составные части белка – аминокислоты. В кишечнике аминокислоты просачиваются в кровь и разносятся по всем клеткам организма. И только затем в каждой клетке из поступивших в нее аминокислот собираются белки, характерные для данной клетки данного организма (отличает одни белки от других порядок следования аминокислот в молекуле белка). Синтезированные клетками белки не включаются в клеточные структуры «на века», в тканях организма постоянно происходит обратный распад белков до аминокислот, их составляющих. Часть аминокислот, являющихся продуктами распада белка, расщепляется далее до более простых соединений, но большая часть этих аминокислот, наряду с новыми аминокислотами, поступающими с пищей или синтезированными самим организмом, тут же включается в новые белковые молекулы, встраивающиеся в ткани взамен распавшихся.
Установлено, что за 10 дней обновляется половина всех белков печени и крови человека, немногим дольше живут и мышечные белки, так, известно, что миофибриллярные белки в мышцах кролика полностью обновляются в течение месяца.
Таким образом, существование мышечной ткани есть непрерывный процесс обновления белков ее составляющих. Соответственно, от соотношения скоростей распада и синтеза белка зависит то, набирает ли человек мышечную массу или теряет ее. Более того, увеличение силы или выносливости мышц без существенного изменения их массы или объема также связано с накоплением в мышцах определенных видов белка, выполняющих функции обеспечения мышечного сокращения. Так, например, накопление в мышцах окислительных ферментов и миоглобина – белка, осуществляющего внутриклеточный транспорт кислорода, приводит к увеличению скорости воспроизводства энергии за счет окислительных процессов, что в целом увеличивает выносливость мышц. Следовательно, тренировка любой направленности, тренировка «на массу», силовая тренировка, или тренировка выносливости мышц, если она достигает своей цели, приводит к увеличению содержания в мышцах тех или иных видов белка. Точнее будет сказать: увеличение содержания в мышцах определенных видов белка есть причина изменений функциональных свойств мышц в процессе их тренировки.
Потому для понимания путей воздействия тренировки на размер и силовые характеристики мышц важно знать, какого рода тренировка и каким образом способствует накоплению в мышцах тех или иных видов белка.
Влияние тренировки на накопление в мышцах тех или иных видов белка
Теоретически увеличение содержания белка в мышцах возможно как благодаря активизации синтеза белка, так и благодаря снижению скорости его распада. Однако, достоверно установлено, что интенсивная работа мышц активизирует катаболизм белка в мышечной ткани, при этом повышенный уровень распада белка может наблюдаться вплоть до нескольких дней после тренировки. А это, в свою очередь, означает, что увеличение содержания белка в мышцах под воздействием тренировки никак не может быть следствием снижения интенсивности катаболических процессов, следовательно, тренировка должна активизировать синтез белка в большей степени, чем его распад.
Последнее утверждение на данный момент является истиной, не подвергающейся сомнению, тем не менее, сами механизмы воздействия тренировки на процессы синтеза белка в мышцах до настоящего времени в достаточно полной мере еще не изучены и являются предметом дискуссий.
В очень грубом приближении процесс синтеза белка можно описать нижеследующей схемой.
В каждой клетке человеческого организма, в том числе и мышечной, имеется ядро, внутри которого заключена молекула ДНК. В молекуле ДНК записана информация о строении всех белков организма. Так как отличает один вид белка от другого лишь последовательность аминокислот в аминокислотной цепочке белка, то именно последовательность аминокислот в молекуле того или иного белка закодирована в ДНК. Участок ДНК, содержащий информацию о строении одного вида белка, принято называть геном. При необходимости синтезировать в клетке определенный белок, с гена данного белка снимается особая копия, называемая матричной РНК, затем РНК выходит из ядра в клетку, и далее на РНК как на шаблоне выстраивается молекула белка. Строительство белка осуществляется путем соединения друг с другом свободных аминокислот, имеющихся в клетке, в том порядке, который «записан» в РНК.
Молекула РНК используется при строительстве белка не как расходный материал, а как чертеж, план строительства, потому на основе одной молекулы РНК может быть собрано множество молекул белка, но, понятно, что чем больше РНК в клетке, тем большее количество молекул белка может собираться одновременно. К тому же РНК имеет тенденцию со временем распадаться, и для непрерывности синтеза белка требуется постоянное восполнение молекул РНК в клетке.
В итоге интенсивность синтеза того или иного белка в клетке зависит от интенсивности синтеза соответствующей РНК в ядре клетки, то есть, от частоты считывания РНК с гена данного белка. Ядра любой клетки человеческого организма имеют одинаковый набор генов, то есть, содержат информацию обо всех белках организма (порядка 100000 генов), однако большинство генов в клетках неактивно, и лишь на небольшой части генов происходит синтез РНК. Так, в мышечных клетках активируется считывание РНК с генов миозина и актина, генов иных белков, характерных для мышечной клетки, а вот гены других видов белка, например, белков крови или белков соединительной ткани, в клетках мышц «молчат». Да и активность «мышечных» генов, в мышечных клетках также не постоянна и может изменяться в зависимости от условий жизнедеятельности мышц. Тот факт, что свойства мышц под воздействием тренировки могут изменяться, то есть, может изменяться относительное содержание тех или иных видов белка в мышце, свидетельствует о том, что тренировка воздействует именно на механизмы синтеза РНК, активируя считывание РНК с нужных генов. И действительно, во множестве экспериментов отмечено резкое усиление синтеза различных видов РНК в мышечных клетках в первые часы после тренировки.
По-видимому, основываясь на приведенных выше фактах и соображениях, ученые достаточно давно пришли к заключению, что тренировка способствует выработке в мышцах определенных веществ – так называемых факторов-регуляторов, активирующих синтез РНК в ядрах мышечных клеток, благодаря чему после тренировки в мышцах активизируется синтез белка, а при регулярных тренировках наблюдается накопление белков в мышцах, то есть, гипертрофия мышц. Считается, что стероидные гормоны, проникающие в мышечную клетку и соединяющиеся со стероидными рецепторами, воздействуют на ядерную ДНК, активируют синтез РНК некоторых мышечных белков, тем самым усиливая синтез белка в мышцах.
В дальнейшем, я не буду постоянно описывать всю истинную последовательность событий, приводящих к синтезу белковых молекул в клетке. Весь данный процесс, начиная с синтеза РНК в ядре клетки и заканчивая сборкой белковой молекулы в саркоплазме клетки, я для краткости буду называть «синтезом белка ядром клетки», при этом следует помнить, что само ядро вовсе не синтезирует белок, а лишь управляет его синтезом. Данный прием позволит мне более кратко и понятно для читателя сформулировать некоторые важные мысли. Так, в частности, описанную выше схему гипертрофии мышц под воздействием тренировки можно будет заменить следующим кратким утверждением: во время интенсивных мышечных сокращений в мышцах вырабатывается ряд факторов регуляторов, воздействующих на ядра мышечных клеток, что приводит к ускорению «синтеза белка данными ядрами» и в дальнейшем к гипертрофии мышц.
Многие ученые, занимающиеся проблемами спорта (во всяком случае, в России), до сих пор убеждены именно в таком механизме мышечной гипертрофии, что подтверждается как статьями данных ученых, так и содержанием современных учебников по биохимии спорта. Вместе с тем, совокупность накопленных к настоящему времени экспериментальных фактов свидетельствует о том, что представления, согласно которым гипертрофия мышц является следствием интенсификации «синтеза белка ядрами» мышечных клеток, крайне далеки от истинного положения дел.