Ядро как система управления клетки. Структура ядра
Введение
Глава 1. Структура и химия клеточного ядра. Открытие ядра. Роберт Броун
1.1. Интерфазное ядро
1.2. Работы флемминга
1.3. Ядрышки
1.4. Ядерная мембрана
1.5. Кариоплазма
1.6. Хроматин
Глава 2. Клеточное ядро — центр управления жизнедеятельностью клетки
2.1. Ядро — незаменимый компонент клетки
2.2. Функциональная структура ядра
2.3. Роль ядерных структур в жизнедеятельности клетки
2.4. Ведущее значение днк
Список литературы
ВВЕДЕНИЕ
Клеточное ядро — центр управления жизнедеятельностью клетки. Из общей схемы белкового синтеза можно видеть, что начальным пунктом, с которого начинается поток информации для биосинтеза белков в клетке, является ДНК. Следовательно, именно ДНК содержит ту первичную запись информации, которая должна сохраняться и воспроизводиться от клетки к клетке, из поколения в поколение. Кратко касаясь вопроса о месте хранения генетической информации, т. е. о локализации ДНК в клетке, можно сказать следующее. Уже давно известно, что, в отличие от всех прочих компонентов синтезирующего белок аппарата, универсально распределенных по всем частям живой клетки, ДНК имеет особую, весьма ограниченную локализацию: местом ее нахождения в клетках высших (эукариотических) организмов является клеточное ядро.
У низших (прокариотических) организмов, не имеющих оформленного клеточного ядра, — бактерий и сине-зеленых водорослей, — ДНК также отделена от остальной части протоплазмы одним или несколькими компактными нуклеоидными образованиями. В полном соответствии с этим ядро эукариотов или нуклеоид прокариотов издавна рассматриваются как вместилище генов, как уникальный клеточный органоид, контролирующий реализацию наследственных признаков организмов и их передачу в поколениях. Генетические данные о «единоначалии» ядра в клетке всегда непосредственно объединялись с биохимическими данными об уникальной локализации ДНК в ядре.
1. СТРУКТУРА И ХИМИЯ КЛЕТОЧНОГО ЯДРА. ОТКРЫТИЕ ЯДРА. РОБЕРТ БРОУН
Термин «ядро» впервые был применен Броуном в 1833 г. для обозначения шаровидных постоянных структур в клетках растений. В 1831—1833 гг., шотландский путешественник и физик (открывший «броуновское движение») Роберт Броун (1773—1858) обнаружил ядро в растительных клетках. Он дал ему название «Nucleus», или «Areola». Первый термин стал общепринятым и сохранился по настоящее время, второй же распространения не получил и забыт. Весьма важно, что Броун настаивал на постоянном наличии ядра во всех живых клетках.
Роль и значение клеточного ядра не были в то время известны. Полагали, что оно представляет собой «конденсированную в комочек слизь, а возможно, и запасное питательное вещество». Позднее такую же структуру описали во всех клетках высших организмов. Говоря о клеточном ядре, мы имеем в виду собственно ядра эукариотических клеток. Их ядра построены сложным образом и довольно резко отличаются от «ядерных» образований, нуклеоидов прокариотических организмов. У последних в состав нуклеоидов (ядроподобных структур) входит одиночная, кольцевая молекула ДНК, практически лишенная белков. Иногда такую молекулу ДНК бактериальных клеток называют бактериальной хромосомой, или генофором (носителем генов).
Бактериальная хромосома не отделена мембранами от основной цитоплазмы, однако собрана в компактную, ядерную зону, нуклеоид, который можно видеть в световом микроскопе после специальных окрасок или же в электронном микроскопе. Анализируя структуру и химию клеточного ядра, мы будем опираться на данные, касающиеся ядер эукариотических клеток, постоянно сравнивая их с ядрами прокариотов. Клеточное ядро, обычно одно на клетку (есть примеры многоядерных клеток), состоит из ядерной оболочки, отделяющей его от цитоплазмы, хроматина, ядрышка и кариоплазмы или ядерного сока. Эти четыре основных компонента встречаются практически во всех неделящихся клетках эукариотических одно- или многоклеточных организмов.
1.2. РАБОТЫ ФЛЕММИНГА
До некоторых пор роль ядра в клеточном делении оставалась неопределенной. Это, вероятно, было связано с трудностью наблюдения за ним. В живой клетке ядро, как правило, можно видеть только при значительном увеличении обычного светового микроскопа. Ядро, находящееся в процессе деления, наблюдать еще труднее. Анилиновые красители окрашивают ядро, цитоплазму и клеточную оболочку по-разному и, следовательно, облегчают узнавание этих структур.
Анилиновые красители синтезируются искусственно, и методика их получения не была известна до середины XIX в. Естественные красители, которые биологи использовали раньше, не всегда окрашивали ядра достаточно хорошо, чтобы их можно было отличить от остальных частей клетки. И вновь дальнейший прогресс зависел от развития подходящих для проведения исследований методов. В то время не было недостатка в хороших микроскопах, но не было известно, как обрабатывать клетки, чтобы увидеть как можно больше клеточных структур. Следует отметить, что никто не знал, будут ли анилиновые красители для этой цели лучше, чем естественные.
Когда в 1860-х гг. химики получили анилиновые красители, кто-то просто наугад попытался использовать их для окрашивания тонких срезов растительных и животных тканей. В 1879 г. немецкий биолог Вальтер Флемминг использовал различные анилиновые красители и ахроматические линзы. Обработав клетки красителями и изучая их под микроскопом с ахроматическими линзами, он проследил за поведением ядра в процессе клеточного деления. В его книге «Клеточное вещество, ядро и клеточное деление» описаны результаты наблюдений над клеточным делением, причем описания очень близки к современным.
Поскольку хромосомы похожи на нити, Флемминг решил назвать этот процесс митозом (греческое слово, что в переводе значит «нить»). Строго говоря, митоз относится только к процессу ядерного удвоения. Образования клеточной пластинки в растительных клетках и клеточной бороздки в животных клетках являются делениями цитоплазмы.
Было бы неправильным считать, что Флемминг — единственный первооткрыватель явления митоза. Понимание всей последовательности процесса митоза зависело от многих ученых, работавших над этой проблемой все предыдущие годы. Одна из основных трудностей исследования событий, происходящих в клетке, состояла в том, что клетки погибали в процессе окрашивания. Это означает, что клетка изучается только после того, как жизнедеятельность в ней прекращена. По этой «остановленной в движении» картине Флемминг и другие исследователи воссоздали то, что происходит в живых клетках. Это примерно то же, что воссоздать работу фабрики по серии моментальных снимков, взятых в различные интервалы времени. По существу, это и было сделано Флеммингом. Другие ученые, основываясь на работе Флеминга, в конце концов выявили связь хромосом с наследственностью и эволюцией.
Именно так развивается наука: успех зависит не от случайных открытий ученых-«гигантов», а от кропотливой работы большого отряда ученых. В световом, а также в фазово-контрастном микроскопах ядро обычно представляется оптически гомогенным: видны лишь оболочка и одно или несколько ядрышек внутри. Иногда обнаруживаются также гранулы и небольшие глыбки. Реже в неделящихся живых клетках удается наблюдать хромосомы. Тонкая хроматиновая сеть отчетливо выявляется лишь после фиксации и окрашивания клетки основными красителями.
Исследования ядра на фиксированных и окрашенных препаратах показали, что его микроскопическое изображение почти не зависит от метода изготовления препаратов. Лучше всего тонкая структура ядра сохраняется при фиксации четырехокисью осмия. Другие общепринятые фиксаторы позволяют различать на препарате ядерную оболочку, ядрышко, хроматиновые структуры в виде глыбок и нитей и неокрашенную массу между ними — нуклеоплазму.
Хроматиновые структуры расположены в более жидкой ахроматической среде, они могут быть плотными или рыхлыми, пузыревидными. У некоторых объектов хроматин после фиксации не образует явно выраженной ядерной сети, а концентрируется в ядре в виде крупных глыбок, названных хромоцентрами, или прохромосомами. В ядрах подобного типа весь хроматин сосредоточен в хромоцентрах.
1.3. ЯДРЫШКИ
Согласно электронно-микроскопическим исследованиям, ядрышки лишены какой-либо мембраны. Вещество их в основном состоит из субмикроскопических нитей и нуклеоплазмы. Ядрышки можно наблюдать, применяя специальные методы окрашивания, а также в ядрах некоторых живых клеток при использовании фазово-контрастного микроскопа или темнопольного конденсора.
На электронных микрофотографиях в ядрышках нередко видны две зоны: центральная — гомогенная и периферическая — построенная из гранулированных нитей. Эти гранулы напоминают рибосомы, но отличаются от них меньшей плотностью и величиной. Ядрышки богаты белками (80-85 %) и РНК (около 15 %) и служат активными центрами синтеза рибосомальной РНК. В соответствии с этим главной составной частью ядрышка является ядрышковая ДНК, которая принадлежит организатору ядрышек одной из хромосом.
содержание РНК заметно колеблется, в зависимости от интенсивности обмена веществ в ядре и цитоплазме. Ядрышки не присутствуют в ядре постоянно: они возникают в средней телофазе митоза и исчезают в конце профазы. Полагают, что по мере затухания синтеза РНК в средней профазе происходят разрыхление ядрышка и выход в цитоплазму образовавшихся в нуклеоплазме субчастиц рибосом. При исчезновении ядрышка во время митоза его белки, ДНК и РНК, становятся основой матрикса хромосом, а в дальнейшем из материала старого ядрышка формируется новое.
Установлена связь ядрышек с хромосомами, имеющими спутников, поэтому число ядрышек соответствует числу спутничных хромосом. Нуклеолонемы сохраняются на протяжении всего цикла клеточного деления и в телофазе переходят от хромосом к новому ядрышку.
1.4. ЯДЕРНАЯ МЕМБРАНА
Неделящееся клеточное ядро заключено в плотную и упругую оболочку, которая растворяется и вновь восстанавливается в процессе деления клетки. Это образование отчетливо видно лишь на некоторых объектах, например у гигантских ядер слизевых клеток алоэ толщина мембраны достигает 1 мкм. В световом микроскопе структуру ядерной оболочки удается наблюдать лишь у плазмолизированных клеток, фиксированных и окрашенных.
Детальное изучение ядерной мембраны стало возможным с появлением электронной микроскопии. Исследования показали, что наличие ядерной оболочки характерно для всех эукариотических клеток. Она состоит из двух элементарных мембран толщиной 6-8 нм каждая — внешней и внутренней, между которыми находится перинуклеарное пространство шириной от 20 до 60 нм. Оно заполнено энхилемой — сывороткообразной жидкостью с низкой электронной плотностью.
Итак, ядерная мембрана представляет собой полый мешок, отделяющий содержимое ядра от цитоплазмы, и состоит из двух слоев: внешний слой ограничивает перинуклеарное пространство снаружи, т. е. со стороны цитоплазмы, внутренний — изнутри, т. е. со стороны ядра. Из всех внутриклеточных мембранных компонентов подобным строением мембран обладают ядро, митохондрии и пластиды.
Морфологическое строение каждого слоя такое же, как и внутренних мембран цитоплазмы. Отличительная особенность ядерной оболочки — наличие в ней пор — округлых перфораций, образующихся в местах слияния внешней и внутренней ядерных мембран. Размеры пор довольно стабильны (30-100 нм в диаметре), в то же время их число изменчиво и зависит от функциональной активности клетки: чем активнее идут в ней синтетические процессы, тем больше пор приходится на единицу поверхности клеточного ядра.
Обнаружено, что количество пор увеличивается в период реконструкции и роста ядра, а также при репликации ДНК. Одно из крупнейших открытий, сделанных с помощью электронной микроскопии, — обнаружение тесной взаимосвязи между ядерной оболочкой и эндоплазматической сетью. Поскольку ядерная оболочка и тяжи эндоплазматической сети во многих местах сообщаются между собой, перинуклеарное пространство должно содержать ту же сывороткообразную жидкость, что и полости между мембранами эндоплазматической сети.
При оценке функциональной роли ядерной оболочки большое значение приобретает вопрос о ее проницаемости, обусловливающей обменные процессы между ядром и цитоплазмой в связи с передачей наследственной информации. Для правильного понимания ядерно-цитоплазматических взаимодействий важно знать, насколько ядерная оболочка проницаема для белков и других метаболитов. Опыты показывают, что ядерная оболочка легко проницаема для относительно крупных молекул. Так, рибонуклеаза — фермент, гидролизующий рибонуклеиновую кислоту без выделения свободной фосфорной кислоты, — имеет молекулярную массу около 13000 и очень быстро проникает в ядро.
Даже в корешках, фиксированных видоизмененным методом замораживания, можно наблюдать, как окрашивание ядрышек подавляется во всех клетках уже через 1 ч после обработки рибонуклеазой.
1.5. КАРИОПЛАЗМА
Кариоплазма (ядерный сок, нуклеоплазма) — основная внутренняя среда ядра, она занимает все пространство между ядрышком, хроматином, мембранами, всевозможными включениями и другими структурами. Кариоплазма под электронным микроскопом имеет вид гомогенной или мелкозернистой массы с низкой электронной плотностью. В ней во взвешенном состоянии находятся рибосомы, микротельца, глобулины и различные продукты метаболизма.
Вязкость ядерного сока примерно такая же, как вязкость основного вещества цитоплазмы. Кислотность ядерного сока, определенная путем микроинъекции индикаторов в ядро, оказалась несколько выше, чем у цитоплазмы.
Кроме того, в ядерном соке содержатся ферменты, участвующие в синтезе нуклеиновых кислот в ядре и рибосомы. Ядерный сок не окрашивается основными красителями, поэтому его называют ахроматиновым веществом, или кариолимфой, в отличие от участков, способных окрашиваться, — хроматина.
1.6. ХРОМАТИН
Термин «хромосома» используется по отношению к молекуле нуклеиновой кислоты, которая представляет собой хранилище генетической информации вируса, прокариота или эукариотической клетки. Однако первоначально слово «хромосома» (т. е. «окрашенное тело») использовалось в другом смысле, — для обозначения густо окрашенных образований в эукариотических ядрах, которые можно было наблюдать в световой микроскоп после обработки клеток красителем.
Эукариотические хромосомы, в изначальном смысле этого слова, выглядят как резко очерченные структуры только непосредственно до и во время митоза — процесса деления ядра в соматических клетках. В покоящихся, неделящихся эукариотических клетках хромосомный материал, называемый хроматином, выглядит нечетко и как бы беспорядочно распределен по всему ядру. Однако, когда клетка готовится к делению, хроматин уплотняется и собирается в свойственное данному виду число хорошо различимых хромосом.
Хроматин был выделен из ядер и проанализирован. Он состоит из очень тонких волокон, которые содержат 60 % белка, 35 % ДНК и, вероятно, 5 % РНК. Хроматиновые волокна в хромосоме свернуты и образуют множество узелков и петель. ДНК в хроматине очень прочно связана с белками, называемыми гистонами, функция которых состоит в упаковке и упорядочении ДНК в структурные единицы — нуклеосомы. В хроматине содержится также ряд негистоновых белков. В отличие от эукариотических, бактериальные хромосомы не содержат гистонов; в их состав входит лишь небольшое количество белков, способствующих образованию петель и конденсации (уплотнению) ДНК.
Глава 2. КЛЕТОЧНОЕ ЯДРО — ЦЕНТР УПРАВЛЕНИЯ ЖИЗНЕДЕЯТЕЛЬНОСТЬЮ КЛЕТКИ
2.1. ЯДРО — НЕЗАМЕНИМЫЙ КОМПОНЕНТ КЛЕТКИ
Еще в конце прошлого века было доказано, что лишенные ядра фрагменты, отрезанные от амебы или инфузории, через более или менее короткое время погибают. Более детальные опыты показали, что энуклеированные амебы живут, но вскоре после операции перестают питаться, двигаться и через несколько дней (до одной недели) погибают. Если пересадить ядро в ранее энуклеированную клетку, то процессы нормальной жизнедеятельности восстанавливаются и через некоторое время амеба начинает делиться.
Яйцеклетки морского ежа, лишенные ядра, при стимуляции к партеногенетическому развитию делятся, но тоже в конце концов погибают. Особенно интересные опыты были проведены на крупной одноклеточной водоросли ацетабулярии. После удаления ядра водоросль не только живет, но и в течение определенного периода может восстанавливать безъядерные участки. Следовательно, при отсутствии ядра прежде всего нарушается способность к размножению, и, хотя жизнеспособность на какое-то время сохраняется, в конце концов такая клетка неизбежно погибает.
содержание ядерного и лишенного ядра фрагмента в среде с радиоактивным предшественником РНК — 3Н-уридином показало, что синтез РНК в безъядерном фрагменте отсутствует. Белковый же синтез продолжается некоторое время за счет информационных РНК и рибосом, сформированных ранее, до удаления ядра. Пожалуй, наиболее яркую иллюстрацию роли ядра дают безъядерные эритроциты млекопитающих. Это эксперимент, поставленный самой природой.
Созревая, эритроциты накапливают гемоглобин, затем выбрасывают ядро и в таком состоянии живут и функционируют в течение 120 дней. Они не способны размножаться и в конце концов погибают. Однако клетки, только что выбросившие ядро, так называемые ретикулоциты, еще продолжают синтез белка, но уже не синтезируют РНК. Следовательно, удаление ядра влечет за собой прекращение поступления в цитоплазму новых РНК, которые синтезируются на молекулах ДНК, локализованных в хромосомах ядра. Однако это не мешает уже существующей в цитоплазме информационной РНК продолжать синтезировать белок, что и наблюдается в ретикулоцитах. Затем, когда РНК распадается, синтез белка прекращается, но эритроцит еще продолжает жить долгое время, выполняя свою функцию, которая не связана с интенсивным расходованием белка.
Лишенные ядра яйцеклетки морского ежа продолжают жить и могут делиться благодаря тому, что во время овогенеза запасли значительное количество РНК, которая и продолжает функционировать. Информационная РНК у бактерий функционирует минуты, но в ряде специализированных клеток млекопитающих она сохраняется сутки и больше.
Несколько особняком стоят данные, полученные на ацетобулярии. Оказалось, что морфогенез удаленной части определяется ядром, но жизнь кусочка обеспечивается ДНК, которую содержат хлоропласты. На этой ДНК синтезируется информационная РНК, которая, в свою очередь, обеспечивает синтез белка.
2.2. ФУНКЦИОНАЛЬНАЯ СТРУКТУРА ЯДРА
В изучении структурно-биохимической организации ядерного аппарата различных клеток большую роль играют сравнительно-цитологические исследования, в которых применяются как традиционный эволюционно-исторический подход, так и широкие сравнительно-цитологические сопоставления организации ядерного аппарата различных разновидностей клеток. Эволюционно-историческое направление в этих исследованиях имеет особое значение, поскольку ядерный аппарат представляет собой наиболее консервативную клеточную структуру — структуру, ответственную за хранение и передачу генетической информации.
Широкое сравнительно-цитологическое изучение ядерного аппарата у тех клеток, которые как бы резко уклоняются от обычного (типичного) уровня организации (ооциты, сперматозоиды, ядерные эритроциты, инфузории и т. д.), и использование данных, полученных с помощью молекулярно-биологических и цитологических методов в специальных науках, занимающихся клеточным уровнем организации (частная цитология, протозоология и т. д.), позволили выявить массу интересных особенностей организации ядерного аппарата, имеющих общецитологическое значение.
В составе ядерного аппарата эукариотных клеток можно выделить ряд субсистем, центральное место среди которых занимает совокупность интерфазных хромосом, или ДНК ядра. В них сосредоточена вся ДНК ядра, находящаяся в весьма сложных взаимоотношениях с белками хроматина, которые, в свою очередь, подразделяются на структурные, функциональные и регуляторные белки.
Второй и весьма важной субсистемой ядерного аппарата является ядерный матрикс, представляющий собой систему фибриллярных белков, выполняющих как структурную (скелетную) функцию в топографической организации всех ядерных компонентов, так и регуляторную функцию в организации процессов репликации, транскрипции, в созревании (процессинге) и перемещении продуктов транскрипции внутри ядра и за его пределы. По-видимому, белковый матрикс имеет двоякую природу: какие-то одни его компоненты обеспечивают в основном скелетную функцию, другие — регуляторную и транспортную.
Вместе с определенными участками ДНК хроматина белки ядерного матрикса (функционального и структурного) образуют основу ядрышка. Белки структурного матрикса принимают участие и в формировании поверхностного аппарата ядра. Поверхностный аппарат ядра занимает и в структурном, и в функциональном отношениях промежуточное положение между метаболическим аппаратом цитоплазмы и ядром. Мембраны и цистерны ядерной оболочки являются по сути дела специализированной частью общей мембранной системы цитоплазмы.
Специфическими структурами поверхностного аппарата ядра, играющими важную роль в реализации его основной функции — обеспечении взаимодействия ядра и цитоплазмы выступают поровые комплексы и субмембранная плотная пластинка, которые образуются с помощью белков ядерного матрикса. Наконец, последней субсистемой ядерного аппарата является кариоплазма. Это аналогичная гиалоплазме внешне бесструктурная фаза ядерного аппарата, которая создает специфическое для ядерных структур микроокружение, что обеспечивает возможность их нормального функционирования.
Кариоплазма находится в постоянном взаимодействии с гиалоплазмой через систему поровых комплексов и мембран ядерной оболочки.
2.3. РОЛЬ ЯДЕРНЫХ СТРУКТУР В ЖИЗНЕДЕЯТЕЛЬНОСТИ КЛЕТКИ
Основные процессы, связанные с синтезом белка, в принципе одинаковы у всех форм живого, указывают на особое значение клеточного ядра. Ядро осуществляет две группы общих функций: одну, направленную на собственно хранение генетической информации, другую — на ее реализацию, на обеспечение синтеза белка. Иными словами, первую группу составляют процессы поддержания наследственной информации в виде неизменной структуры ДНК. Эти процессы обусловлены наличием так называемых репарационных ферментов, ликвидирующих спонтанные повреждения молекул ДНК (разрыв одной из цепей ДНК, часть радиационных повреждений), что сохраняет строение молекул ДНК практически неизменными в ряду поколений клеток или организмов.
Далее в ядре происходит воспроизведение, или редупликация, молекул ДНК, что дает возможность двум клеткам получить совершенно одинаковые и в качественном, и в количественном смысле объемы генетической информации. В ядрах происходят процессы изменения и рекомбинации генетического материала, что наблюдается во время мейоза (кроссинговер). Наконец, ядра непосредственно участвуют в процессах распределения молекул ДНК при делении клеток.
Другой группой клеточных процессов, обеспечивающихся активностью ядра, является создание собственно аппарата белкового синтеза. Это не только синтез, транскрипция на молекулах ДНК разных информационных РНК, но транскрипция всех видов трансферных РНК и рибосомных РНК. В ядре эукариотов происходит также образование субъединиц рибосом путем комплексирования синтезированных в ядрышке рибосомных РНК с рибосомными белками, которые синтезируются в цитоплазме и переносятся в ядро. Таким образом, ядро представляет собой не только вместилище генетического материала, но и место, где этот материал функционирует и воспроизводится. Поэтому выпадение или нарушение любой из перечисленных выше функций гибельно для клетки в целом.
Так, нарушение репарационных процессов будет приводить к изменению первичной структуры ДНК и автоматически — к изменению структуры белков, что непременно скажется на их специфической активности, которая может просто исчезнуть или измениться так, что не сможет обеспечивать клеточные функции, в результате чего клетка погибает. Нарушения редупликации ДНК приведут к остановке размножения клеток или к появлению клеток с неполноценным набором генетической информации, что тоже гибельно для них. К такому же результату приведет нарушение процессов распределения генетического материала (молекул ДНК) при делении клеток.
Выпадение в результате поражения ядра или в случаях нарушений каких-либо регуляторных процессов синтеза любой формы РНК автоматически приведет к остановке синтеза белка в клетке или к грубым его нарушениям. Все это указывает на ведущее значение ядерных структур в процессах, связанных с синтезом нуклеиновых кислот и белков, главных функционеров в жизнедеятельности клетки.
Ядро осуществляет сложную координацию и регуляцию процессов синтеза РНК. Как указывалось, все три типа РНК образуются на ДНК. Радиографическими методами показано, что синтез РНК начинается в ядре (хроматине и ядрышке), и уже синтезированная РНК перемещается в цитоплазму. Таким образом мы видим, что ядро программирует синтез белка, который осуществляется в цитоплазме. Однако само ядро также испытывает влияние цитоплазмы, т. к. синтезируемые в ней ферменты поступают в ядро и необходимы для его нормального функционирования. Например, в цитоплазме синтезируется ДНК-полимераза, без которой не может происходить авторепродукция молекул ДНК. Поэтому следует говорить о взаимном влиянии ядра и цитоплазмы, при котором главенствующая роль все же принадлежит ядру как хранителю наследственной информации, которая передается при делении от одной клетки к другой.
2.4. ВЕДУЩЕЕ ЗНАЧЕНИЕ ДНК
Основное биологическое значение ядерного аппарата определяется его главным компонентом — гигантскими молекулами ДНК, способными к репликации и транскрипции. Эти два свойства ДНК и лежат в основе двух важнейших функций ядерного аппарата любой клетки:
а) удвоения наследственной информации и передачи ее в ряду клеточных поколений;
б) регулируемой транскрипции участков молекул ДНК и транспорта синтезируемых РНК в цитоплазму клеток.
По характеру организации ядерного аппарата все клетки делятся на три группы: прокариотные, мезокариотные и эукариотные.
Клеткам прокариот свойственны отсутствие ядерной оболочки, укладка ДНК без участия гистонов, унирепликонный тип репликации ДНК, моноцистронный принцип организации транскрипции и ее регуляция преимущественно по принципу положительной и отрицательной обратной связи.
Клетки эукариот, напротив, отличаются наличием ядерной оболочки, точнее говоря, даже сложного поверхностного аппарата ядра и мультирепликонным типом репликации молекул ДНК, образующих набор хромосом. Упаковка этих молекул происходит с помощью комплекса белков. Характер упаковки подвергается циклическим изменениям, связанным с прохождением клетками закономерных фаз цикла репродукции. Процессы транскрипции ДНК и ее регуляции у эукариот значительно отличаются от таковых у прокариот.
Мезокариотные клетки по организации ядерного аппарата занимают как бы промежуточное положение между эукариотными и прокариотными клетками. У мезокариот, как и у эукариот, имеется хорошо развитый поверхностный аппарат ядра. Укладка в хромосомы молекул ДНК существенно отличается от организации ДНП в эукариотных клетках. Механизмы репликации и транскрипции ДНК у мезокариот выяснены слабо. Таким образом в клеточном ядре протекают важнейшие процессы, связанные с наследственным статусом организма, — peпликация (биосинтез ДНК) и транскрипция.
Кроме того, ядро является источником отдельных белков и ферментов, необходимых для жизнедеятельности дифференцированных тканей. Одновременно с потоком информации в клетку для обеспечения синтеза белков осуществляется обратная связь: цитоплазма — ядро, т. е. ядро функционирует в тесном взаимодействии с другими частями клетки, объединяя процессы ядерно-цитоплазматического транспорта и регуляторного взаимодействия с цитоплазмой клетки.