Причины возникновения турбулентности
Разделим турбулентность в зависимости от причин возникновения и развития на механическую, термическую и среза потоков. Каждая имеет существенные различия, поэтому мы рассмотрим их раздельно. Однако, мы должны сознавать, что они могут встречаться в любой комбинации. Например, механическая и термическая турбулентности часто присутствуют обе вблизи поверхности в жаркие, ветреные дни.
МЕХАНИЧЕСКАЯ ТУРБУЛЕНТНОСТЬ
Когда твердое тело - будь то гора, лес, дом или человек находится в потоке воздуха, оно разбивает его. Если скорость воздуха невелика, то возможно просто отклонение потока, но при больших скоростях поток разбивается с образованием вихрей, которые создают за объектом след, являющийся уже настоящей турбулентностью. Этот эффект можно наблюдать, опуская руку в воду, текущую с различной скоростью.
На рисунке 95 показано обтекание твердого тела потоком воздуха, при различной скорости. Подчеркнем, что более скоростной поток создает не только более сильную турбулентность, но и увеличивает ее след за объектом. Интересно расположение вихрей. Более или менее стабильные вихри, расположенные в одном месте, определяются формой твердого тела. В атмосфере такие вихри мы называем роторами. Естественно, эти роторы могут отрываться потоком и уносится, но их место занимают новые. В основном, они стабильны и занимают свое место до тех пор, пока существует поток с определенными параметрами. Если скорость потока сильно увеличится, роторы унесет, на их месте будет сплошная турбулентность.
Как гласит закон Ньютона, силы, с которыми тело действует на поток эквивалентны и противоположны тем, которые действуют на тело со стороны потока. Эти силы можно наблюдать, выставляя руку в окно автомобиля, движущегося с различными скоростями. Испытываемая сила сопротивления определяется разностью давлений спереди и сзади руки. Чем больше сила сопротивления, тем сильнее турбулентность за рукой. Кроме скорости потока, очень важным фактором является форма объекта. Если предмет имеет острые кромки, то невозможно безотрывное обтекание поверхностей из-за инерции молекул воздуха. На рисунке 96 показаны тела различной формы и модель их обтекания. На первой картинке изображено сечение объекта, создающего минимальное сопротивление и минимальную турбулентность. Самолеты и лодки очень похожи на него, а деревья, растущие в районах с сильными и частыми ветрами, стремятся к подобной конфигурации. На других картинках показано, как острые кромки или большая кривизна поверхности инициируют турбулентность. Теперь понятно, что любой предмет на земной поверхности является турбулизатором движущегося воздуха, а интенсивность турбулентности зависит от скорости ветра, размеров и формы горы, здания или любого другого объекта. Турбулентность, вызванная любыми твердыми телами, расположенными на земной поверхности, ограничивается слоем толщиной до 500 м над самым высоким из них. В предыдущей главе, в таблице мы назвали этот слой переходным. В этом слое имеет место нарушение ламинарности и равномерности потока. Величина объектов, стоящих на пути воздушного потока, определяет начальные размеры вихрей турбулентности. Чем больше преграда, тем больше вихри, но они могут быстро разделиться на более мелкие. Обычно объект создает начальный вихрь в 1/10 - 1/7 своего размера. Таблица, приведенная ниже, дает примерный диаметр вихрей для некоторых территорий.
Примерные диаметры вихрей турбулентности
Город или лес | 2,0 м |
Отделъностоящие дома | 0,5 м |
Скошеное поле (стерня) | 0,1 м |
Скошенная трава | 10 мм |
Океан, большое озеро | 0,3мм |
Рассмотрим влияние скорости ветра. При слабом ветре турбулентность слаба или отсутствует совсем. В средний ветер могут формироваться вихри, и тогда для наблюдателя ветер будет быстро меняться, в том числе и по направлению. В более сильный ветер (более 30 км/ч) вихри могут быть очень интенсивными, более мелкими и сноситься потоком, пока не разрушатся. В этом случае будут заметны существенные изменения в скорости ветра, а изменения в направлении слабо выражены.
Сила ветра и энергия вихрей турбулентности пропорциональна квадрату скорости. То есть, если скорость ветра увеличилась в два раза, то сила его воздействия увеличится вчетверо. Вихри, вызванные более сильным ветром, будут также более интенсивными. Эту мысль стоит выделить: Мощность турбулентности увеличивается с квадратом скорости ветра.
ТЕРМИЧЕСКАЯ ТУРБУЛЕНТНОСТЬ.
Второй причиной турбулентности в атмосфере является тепловая конвекция или термичность. Как показано на рисунке 97, когда образуется восходящий тепловой поток, он вторгается в воздух над ним и приводит этим к образованию вихрей турбулентности и изменению других параметров окружающего воздуха. Как мы увидим в главах 9 и 10, термики сами по себе образуют вращение поднимающегося воздуха внутри и рядом, а также нисходящие потоки по периметру. Пролетая сквозь такие поднимающиеся массы воздуха, пилот ощущает резкие переходы от нисходящих потоков к восходящим и наоборот. Авиационное название этого явления в прошлые времена - "воздушные ямы". Кромка таких термических потоков в любом случае очень турбулентна. Очень опасна термичность в жарких пустынях, где поток может перевернуть или даже разрушить небольшой самолет. К счастью, такие экстремальные условия встречаются довольно редко. Термическая турбулентность, обычно, наиболее сильна на высотах 600 - 1300 м , но может достигать нескольких километров в пустынях или в грозовых условиях. Результатом одновременного присутствия механической и термической турбулентности может быть достаточно хаотическое движение воздуха (пример на рисунке 98). Даже когда основной ветер слаб, термические потоки могут создавать приземную турбулентность, притягивая воздух со всех направлений. Рисунок 99 иллюстрирует влияние термичности на движение воздуха у поверхности. Когда нагретый воздух поднимается, его место занимает воздух сверху. Если наверху дует ветер, то движение вниз приведет к тому, что у земли будет ощущение потока, направленного к земле с горизонтальной и вертикальной составляющими. Этот эффект называют "кошачьей лапой" и увидеть его можно в ветренный день с термической активностью по местной ряби на воде, по верхушкам леса, на травяных полях. Такие порции холодного воздуха приводят как к умеренной, так и к сильной турбулентности.
ТУРБУЛЕНТНОСТЬ СРЕЗА.
Третья и последняя причина возникновения турбулентности - это следствие среза ветра. Под термином срез будем понимать плоскость соприкосновения двух слоев воздуха, которые имеют различные скорости или направления. В этом случае граница между этими двумя потоками становится зоной, или слоем турбулентности, возникающей из-за трения между ними, как показано на рисунке 100.
В действительности, причиной любой турбулентности являются процессы среза, в том смысле, в котором мы понимаем это слово. Для механической турбулентности наличие на поверхности неровностей и трение потока (рис. 83) это тоже срез. Термическая - это срез при различных скоростях и направлениях восходящего потока и окружающего воздуха. Однако мы игнорируем эти детали и рассматриваем только турбулентность, возникающую при взаимодействии двух слоев с различными скоростями или даже направлениями движения.
Нужно сказать, что можно отделить скоростные и температурные причины возникновения турбулентности среза. Можно сказать, что слои воздуха, имеющие различные температуры, имеют неодинаковые скорости и направления, что является причиной турбулентности среза между ними. В предыдущих главах говорилось, что эффекты нагревания и охлаждения воздуха, а также барические системы высокого давления создают температурные инверсии и струйные потоки на различных уровнях. Это типичное явление, тесно связанное с турбулентностью среза.
В самом деле, турбулентность среза чаще всего встречается возле слоя инверсии. Этот слой может быть на высоте нескольких сотен метров, формируется он опускающимся воздухом в барических системах высокого давления, или ночью, когда нижний слой воздуха остывает быстрее. В первом случае, инверсионный слой может остановить подъем термических потоков, турбулентный воздух перемешается в теплом слое. На рисунке 101 изображено несколько ситуаций, когда присутствуют одновременно инверсия и турбулентность среза. На последней картинке мы видим, как в долине собирается холодный воздух, а более теплый протекая над ним с большой скоростью, приводит к образованию сильной турбулентности среза на границе между воздушными массами. В горных районах после обеда возникают мощные холодные потоки, которые являются результатом стока воздуха с гор в долину (подробнее об этом явлении в следующей главе). Они приводят к образованию сильной турбулентности среза (рис. 102). Этот процесс чаще всего встречается на восточно-ориентированных склонах с глубокими каньонами внизу в жаркие дни, когда солнце опускается ниже вершин и восточные склоны оказываются в тени. На рисунке 103 объясняется еще одна причина возникновения турбулентности среза - это холодный и теплый фронты, а также фронты морских бризов (смотри следующую главу). Отметим, что сильная турбулентность среза встречается на границе двух воздушных масс с сильно отличающимися характеристиками (например, во фронте морского бриза). Турбулентность среза имеет тенденцию удерживаться длительное время, если слои ее порождающие, стабильны. Мощные фронты могут создавать турбулентный слой на несколько дней. Слои воздуха с различной температурой, а значит и плотностью не стремятся перемешиваться. Таким образом, они некоторое время поддерживают разделение и перемешиваются только в узком слое между собой. С годами турбулентность среза не становится менее тяжелым испытанием для спортивной авиации. Для большей части малой авиации лучше ее избегать. Турбулентность среза часто выглядит как небольшая болтанка и возможны вполне нормальные полеты, но может быть очень сильной, неприятной даже для самолетов, что встречается в верхних слоях и чаще в высоких широтах.
ВИХРЕВАЯ ТУРБУЛЕНТНОСТЬ
Мы рассмотрели три естественных причины возникновения турбулентности. Для полноты информации отметим, что есть еще причина, созданная человеком. Это спутная струя, представляющая собой вихрь, сходящий с законцовок всех крыльев. Он имеет большую энергию, и его воздействие в воздухе на летательный аппарат, летящий сзади, ощутимо. Спутная струя от другого аппарата действует на некотором расстоянии за крылом. В этих пределах летящий сзади ощущает толчки, удары, тряску в зависимости от расстояния и положения относительно переднего аппарата. Спутные струи за самолетом намного интенсивнее, чем мы можем предположить, они могут стать причиной проблем в управлении и даже разрушений попавшего в них летательного аппарата. Избегая их, вы сохраняете свое здоровье. Спутные струи тем интенсивнее, чем больше нагрузка на крыло, чем менее аэродинамически совершенен летательный аппарат и чем больше углы атаки.
РОТОРЫ
В определенных условиях в пересеченной или горной местности образуются вихри, которые мы называем роторами. Длительность их существования зависит от того, как долго дует ветер. Позднее будут приведены рисунки с примерами роторов.
Роторы возникают в стабильных условиях при слабых или средних ветрах. В нестабильных условиях (например: термичность) имеется тенденция к их дроблению или уничтожению совсем. В более сильный ветер ротора обычно сдуваются в направлении основной турбулентности, свойственной данной местности. В полете надо избегать роторов, потому что они приводят к возникновению сильных нисходящих потоков и создают проблемы в управлении аппаратом. Полет вдоль оси ротора может привести к опрокидыванию. Роторы, которые расположены под волной (глава 8) могут привести к разрушению самолета.
ПРИЗНАКИ ТУРБУЛЕНТНОСТИ
Турбулентность можно увидеть, находясь на земле. Любое быстрое изменение скорости или направления движения воздуха является указателем турбулентности. Каждый пилот должен знать максимальные параметры турбулентности, допустимые для его летательного аппарата, да еще с учетом его индивидуального мастерства. Например, примем ограничение изменения скорости и направления ветра на 2 м/с и 45° за 3 секунды. Если изменения больше, или такие, но за меньший промежуток времени, то вам лучше подождать более подходящую погоду.
Рис. 104 Дым как индикатор турбулентности. Любые гибкие объекты, которые могут служить указателями ветра, такие, как: деревья, поля злаковых, высокая трава, водяные пространства, флаги и ветроуказатели можно использовать для определения интенсивности турбулентности. Идеальным детектором турбулентности является дым, как показано на рисунке 104.
Как отмечалось в главе 3 определенные типы облаков также хорошо указывают на турбулентность. Кучевые облака очень часто связаны с термиками и, следовательно, с термической турбулентностью. На интенсивность турбулентности частично указывают вертикальное развитие и скорость роста облаков, связанные с термической активностью. Турбулентность среза также можно определить по типу облаков. Слоистые облака часто находятся в инверсионном слое. А граница слоя инверсии с более холодным воздухом является зоной турбулентности среза. Billow облака, которые рассматриваются выше (рис. 34), указывают на срез потоков. Часто они возникают по причине прихода теплого фронта и обычно выше уровня полетов спортивных аппаратов (5000 м и более).
Последний тип облаков, который может помочь определить наличие турбулентности, - это волновые облака (рис.33). Сильные роторы часто соседствуют с волнами, поэтому район с волновыми облаками представляет опасность для легкой авиации. В главе 8 мы подробнее рассмотрим волны и покажем, чем опасен ротор.