Синтез и биологическая роль гистамина

Аминокислота гистидин в разных тканях подвергается действию различных ферментов и включается в разные метаболические пути: синтез белков, катаболизм до конечных продуктов, синтез гистамина, образование карнозина и анзерина.

В печени и коже гистидин подвергается дезаминированию под действием фермента гистидазы с образованием уроканиновой кислоты. Ферменты гистидаза и уроканиназа являются гепатоспецифическими, поэтому их определение используется для диагностики поражений печени и нервных клетках.

Гистамин образуется путем декарбоксилирования гистидина в тучных клетках соединительной ткани:

Синтез и биологическая роль гистамина - student2.ru

Гистамин образует комплекс с белками и сохраняется в секреторных гранулах тучных клеток. Секретируется в кровь при повреждении ткани (удар, ожог, воздействие эндо- и экзогенных веществ), развитии иммунных и аллергических реакций. Гистамин выполняет в организме человека следующие функции:

• стимулирует секрецию желудочного сока, слюны, т.е. является пищеварительным гормоном;

• повышает проницаемость капилляров, вызывает отеки, снижает артериальное давление (но увеличивает внутричерепное давление, вызывает головную боль);

• сокращает гладкую мускулатуру легких, вызывает удушье;

• участвует в формировании воспалительной реакции – вызывает расширение сосудов, покраснение кожи, отечность ткани;

• вызывает аллергическую реакцию;

• выполняет роль нейромедиатора;

• является медиатором боли.

Синтез β-аланина:

Синтез и биологическая роль гистамина - student2.ru


β-аланин входит в состав молекулы кофермента А.


Синтез этаноламинина

Синтез и биологическая роль гистамина - student2.ru

Декарбоксилирование серина дает этаноламин, который наряду с его метилированным производным холином играет важную роль в биосинтезе фосфолипидов (фосфатидилэтаноламина).

Синтез дофамина

Синтез и биологическая роль гистамина - student2.ru

Гидроксилирование ароматической аминокислоты тарозина дает 3,4-диоксифенилаланин (ДОФА), который, в свою очередь, образует при декарбоксилировании ароматический амин дофамин, предшественник в синтезе адреналина и норадреналина.

Синтез триптамина

Синтез и биологическая роль гистамина - student2.ru

Образующийся из триптофана под действием этого фермента продукт - триптамин - наделен сосудосуживающим действием.

Для осуществления биологической функции в нервных клетках требуется определенная концентрация биогенных аминов. Синтез и секреция их строго регулируются и происходят в ответ на определенные сигналы. Избыточное накопление может вызывать различные патологические состояния.

В связи с этим большое значение имеют механизмы инактивации биогенных аминов, которая осуществляется с большой скоростью преимущественно в печени.

Существует два способа инактивации биогенных аминов и некоторых гормонов.

• Метилирование с участием SAM под действием метилтрансфераз. Таким способом могут инактивироваться различные биогенные амины, но чаще всего гистамин и адреналин:

Синтез и биологическая роль гистамина - student2.ru

Метилированные производные биогенных аминов обычно теряют биологическую активность, в печени подвергаются конъюгации с глюкуроновой или серной кислотой и выводятся из организма или же окисляются МАО.

• Окисление ферментами МАО с коферментом FAD. Таким путем чаще происходит инактивация дофамина, норадреналина, серотонина, ГАМК. При этом происходит окислительное дезаминирование биогенных аминов с образованием альдегидов, а затем соответствующих кислот, которые выводятся почками.

Синтез и биологическая роль гистамина - student2.ru

Нейромедиаторы - низкомолекулярные вещества - поступают из синаптических пузырьков в синаптическую щель и связываются со своими рецепторами в постсинаптической мембране. Взаимодей­ствие нейромедиатора с рецептором активирует лиганд-зависимые каналы или систему G-белка.

Нейромедиатор должен удовлетворять следующим кри­териям:

· вещество выделяется из нейрона при его возбужде­нии;

· в нейроне присутствуют ферменты для синтеза данного вещества;

· постсинаптические клетки имеют рецепторы к это­му веществу;

· экзогенный аналог имитирует действие нейро­медиатора.

Большинство нейромедиаторов - аминокислоты и их производные. Некоторые нейроны модифицируют аминокисло­ты с образованием аминов (норадреналин, серотонин, ацетилхолин). Другие нейромедиаторы (эндорфины, энкефалины) имеют пептидную природу. Каждый нейрон может синтезировать более одного нейромедиатора.

Известно более 50 химических веществ, выпол­няющих функции нейромедиаторов, их можно разделить на сле­дующие группы.

· Аминокислоты: нейтральные (глутамат и аспартат) и кислые (глицин, ГАМК).

· Амины: моноамины (ацетилхолин, серотонин, гистамин) и катехоловые амины (адреналин, норадреналин, дофамин).

· Нейропептиды: ТТГ-РГ, метионин- и лейцин-энкефалины, ангиотензин II, холецистокинин-подобный пептид, окситоцин, соматостатин, люлиберин, вещество Р, нейротензин, гастрин-рилизинг пептид, аргинин-вазопрессин, ?-эндорфин, АКТГ, VIP.

· Пурины: АТФ и аденозин.

Газы не являются «классическими» медиаторами, поскольку не содержатся в синаптических пузырьках. Пример: оксид азота (NO).

7. Реакции гидроксилирования (фенилаланин → тирозин, триптофан → 5-гидрокситриптофан, пролин → 4-гидроксипролин). Роль гидроксипролина в стабилизации спирали коллагена дентина и эмали.

Гидроксилированиемназывают введение в молекулу органического соединения гидроксильной группы. Так, гидроксилирование фенилаланина приводит к образованию тирозина:

Синтез и биологическая роль гистамина - student2.ru

Отсутствие в организме фермента, катализирующего эту реакцию, приводит к тяжелому заболеванию - фенилкетонурии.

Гидроксилирование триптофана в 5-гидрокситриптофан (синтез серотонина):

Синтез и биологическая роль гистамина - student2.ru

Значительный интерес представляет реакция гидроксилирования пролина:

Синтез и биологическая роль гистамина - student2.ru

Гидроксилирование пролина необходимо для стабилизации тройной спирали коллагена, которая осуществляется за счет образования водородных связей.

При цинге нарушается гидроксилирование остатков пролина и лизина. В результате образуются менее прочные коллагеновые волокна, что приводит к хрупкости и ломкости кровеносных сосудов.

Наши рекомендации