Классификация реакций, применяющихся в кинетике: гомогенные, гетерогенные, микрогетерогенные; простые и сложные (параллельные, последовательные, сопряженные, цепные)
Гомогенная реакция происходит в гомогенной системе и осуществляется во всем объеме этой системы.
Гетерогенная реакция происходит между веществами, образующими гетерогенную систему. Она проходит только на поверхности раздела фаз этой системы. Например:
Fe + 2НСl→FeCl2 + Н2
Растворение металла в кислоте может происходить только на поверхности металла, так как только здесь контактируют друг с другом оба реагирующих вещества.
Микрогетерогенный катализ- это такой тип катализа, когда катализатор и реагенты находятся в коллоидно-дисперсном состоянии. Размеры частичек ферментов близки к размерам мицелл коллоидных растворов – 1-100 нм. По отношению к субстратам, частички которых часто намного меньше, катализаторы являются гетерогенными.
Различают простые и сложные реакции. Простыми, элементарными являются одностадийные реакции. Например:
Н2 + I2 → 2HI, СH3-N=N-CH3 → C2H6 + N2
Простых реакций мало, большинство процессов - сложные. Сложныминазываются многостадийные реакции.
Сложные, или многостадийные, реакции могут быть параллельными, последовательными, сопряженными, цепными, фотохимическими и т. д.
Параллельные- это реакции, в результате которых из одного или нескольких веществ в зависимости от условий образуются различные продукты, например, при термическом разложении хлората калия одновременно идут два превращения:
KCl + O2
KClO3
KClO4 + KCl
В организме параллельно с биологическим окислением глюкозы может происходить ее молочнокислое или спиртовое брожение. В биосистемах таких случаев много. Организм должен найти оптимальные доли каждого из направлений.
Последовательные (консекутивные) - это реакции, которые протекают в несколько стадий. Продукты, образовавшиеся в первой стадии, являются исходными веществами для второй и т. д.:
k1 k2 k3
A → B → C → D
Примерами последовательных реакций в организме могут быть биологическое окисление глюкозы, гидролиз АТФ и др.
Скорость процесса определяется скоростью самой медленной стадии, которую называют лимитирующей.
Сопряженные - это частный случай параллельных реакций:
1) A + B → E;
2) A + C → F;
из которых первая протекает лишь совместно со второй, т. е. индуцируется второй реакцией. Первая реакция не происходит до тех пор, пока не введено в систему вещество С - индуктор. Явление химической индукции впервые исследовал в 1905 г. русский ученый А.Н. Шилов.
В биологических системах все эндергонические реакции протекают по механизму сопряженных реакций. Клеточное окисление углеводов или липидов в организме приводит к синтезу аденозинфосфорной кислоты, которая, в свою очередь, индуцирует другие прекращения, в частности биосинтез белков и нуклеиновых кислот.
Цепные- это реакции, происходящие с участием свободных радикалов (остатков молекул, имеющих неспаренные электроны и проявляющих вследствие этого очень высокую реакционную способность).
Примером цепной реакции может быть синтез хлороводорода:
H2+Cl2 → 2HCl.
Под действием кванта энергии молекула Сl2 образует два радикала.
Реакция начинается при облучении смеси исходных веществ ультрафиолетовым светом:
hv
С12 Cl· + Cl· (зарождение цепи).
Далее происходит развитие цепи:
Cl· + Н2 → НСl+ Н;
Н· + Сl2 → НСl + Cl·.
Это пример неразветвленной цепной реакции.
В разветвленной цепной реакции взаимодействие свободного радикала с молекулой исходного вещества вызывает образование не одного, а двух или большего числа новых радикалов:
2Н2 + О2 → 2Н2О;
Н2 + О2 → ОН· + ОН·;
ОН· + Н2 → Н2О + H·;
H· + О2 → ОН· + O·;
O· + Н2 → ОН· + H·.
Обрыв цепи может происходить при рекомбинации свободных радикалов, а также при взаимодействии их с посторонними веществами.
Токсические вещества часто действуют по цепному механизму, обусловливая в организме необратимые изменения. Вещества, способные обрывать разветвленное цепное окисление и таким образом предотвращать окислительные процессы, называются антиоксидантами.
Примером антиоксиданта, препятствующего в организме окислению ненасыщенных липидов и предохраняющего биологические мембраны от разрушения, является витамин Е. Его биологическая активность основана на способности образовывать устойчивые свободные радикалы в результате отщепления атома водорода от гидроксильной группы. Эти радикалы вступают во взаимодействие с другими свободными радикалами, которые способствуют образованию органических пероксидов.
Цепные реакции играют важную роль в ряде патологических биопроцессов: канцерогенез, лучевая болезнь и др. К цепным процессам принадлежат ядерные реакции, взрывы, реакции полимеризации и др.