Пуриновые нуклеиновые основания

В состав НК входят нуклеиновые основания аденин и гуанин. Из двух таутомерных форм гуанина (лактимная и лактамная) более устойчивой является лактамная, в виде которой гуанин входит в состав НК.

Лактамная форма
Лактимная форма
Пуриновые нуклеиновые основания - student2.ru Пуриновые нуклеиновые основания - student2.ru Пуриновые нуклеиновые основания - student2.ru Пуриновые нуклеиновые основания - student2.ru

2-Амино-6-оксопурин
Пуриновые нуклеиновые основания - student2.ru

 
Следует отметить, что в отличие от самого пурина атом водорода в аденине и гуанине зафиксирован в положении 9. В такой форме эти основания связаны с остатком углевода в нуклеозидах и НК.

Гидроксипроизводные пурина

Это гипоксантин, ксантин и мочевая к-та – продукты превращения в организме НК.

Пуриновые нуклеиновые основания - student2.ru     Гипоксантин, 6-гидроксипурин Пуриновые нуклеиновые основания - student2.ru Ксантин, 2,6-дигидроксипурин Пуриновые нуклеиновые основания - student2.ru Мочевая к-та, 2,6,8-тригидроксипурин

Для гидроксипуринов возможна лактим – лактамная таутомерия, однако в кристаллическом состоянии они существуют преимущественно в лактамной форме. У ксантинов возможна также миграция атома водорода между атомами азота в положениях 7 и 9 имидазольного кольца.

Мочевая к-та плохо растворима в воде и содержится в моче человека и млекопитающих в незначительных количествах. При некоторых нарушениях обмена вещ-в мочевая к-та и ее соли (ураты) откладываются в виде так называемых камней.

В медицине находят применение N – метилированные ксантины, т.е. производные, содержащие две или три метильные группы у атомов азота: теофиллин, теобромин и кофеин:

Пуриновые нуклеиновые основания - student2.ru Тиофиллин, 1,3-диметилксантин Пуриновые нуклеиновые основания - student2.ru Теобромин, 3,7-диметилксантин Пуриновые нуклеиновые основания - student2.ru Кофеин, 1,3,7-триметилксантин

Пуриновые нуклеиновые основания - student2.ru Пуриновые нуклеиновые основания - student2.ru

Теофиллин содержится в листьях чая, теобромин – в бобах какао, кофеин – в листьях чая и зернах кофе, откуда эти вещ-ва и извлекаются. Теофиллин и теобромин обладают мочегонным действием, кофеин стимулирует ЦНС.

Качественные р-ции пуринов

1. Р-ции солеобразования:

а) Теофелин + NaOH + CoC12 ® Соль ¯

серо-голубого цвета

б) Теобромин + NaOH + CoC12 ® Соль ¯

розового цвета

в) Кофеин + танин ® Соль ¯

белого цвета

2. Общей качественной р-цией для обнаружения ксантинов и мочевой к-ты является мурексидная проба. Эта р-ция довольно сложна. Она основана на окислении ксантинов и мочевой к-ты азотной к-той. Продукт окисления при взаимодействии с NH3 образуют аммониевую соль пурпурной к-ты, называемую мурексидом, пурпурно-красного цвета. Калиевая соль пурпурной к-ты имеет сине-фиолетовую окраску.

ЛЕКЦИЯ 15

Нуклеиновые к-ты (НК)

НК являются природными высокомолекулярными соединениями. Молекулярная масса НК колеблется от 200 тысяч до 20 миллионов. Они играют важную роль в передаче наследственных признаков и осуществляют контроль за синтезом специфических белков в организме.

Химический состав НК

К 40-м годам нашего столетия работами А. Тодда было показано, что в молекулах НК содержатся фосфорная к-та, пентозы и азотистые основания.

Пентозы в НК представлены рибозой и 2-дезоксирибозой в b-фуранозной форме:

Пуриновые нуклеиновые основания - student2.ru   b- Рибоза Пуриновые нуклеиновые основания - student2.ru   2- Дезоксирибоза

Именно по характеру углеводного компонента–пентозы – все НК делятся на две большие группы:

1) рибонуклеиновые к-ты (РНК), содержащие рибозу,

2) дезоксирибонуклеиновые к-ты (ДНК), содержащие дезоксирибозу.

Азотистыми основаниями в НК являются производственные пурина и пиримидина.Из пуриновых оснований наиболее часто встречаются в составе НК аденин и гуанин:

Пуриновые нуклеиновые основания - student2.ru Аденин, 6-аминопурин Пуриновые нуклеиновые основания - student2.ru Гуанин, 2-амино-6-гидроксипурин

Из производных пиримидина чаще всего обнаруживаются цитозин, урацил, тимин, которые входят в состав НК в лактамной форме:

Пуриновые нуклеиновые основания - student2.ru Цитозин, 2- гидроксо-4-амино- пиримидин Пуриновые нуклеиновые основания - student2.ru Урацил, 2,4- дигидроксо- пиримидин Пуриновые нуклеиновые основания - student2.ru Тимин, 5- метилурацил, 2,4- дигидроксо- 5- метилпиримидин  

НК отличаются по составу азотистых оснований. Аденин, гуанин и цитозин входят в состав РНК и ДНК. Урацил содержится только в РНК, а тимин – в ДНК. При написании названия азотистых оснований их часто обозначают первыми заглавными буквами: А- аденин, Ц- цитозин и т.д.

Нуклеозиды

Пентозы, соединяясь с азотистыми основаниями, образуют нуклеозиды. Пуриновые основания присоединяются по 9, а пиримидиновые по 1 атому азота b-N- гликозидной связью. Схема образования пуринового нуклеозида:

Пуриновые нуклеиновые основания - student2.ru

Схема образования пиримидинового нуклеозида:

Пуриновые нуклеиновые основания - student2.ru

При названии пуриновых нуклеозидов окончание- ИН меняется на-ОЗИН: аденозин, гуанозин. Если в состав нуклеозида входит 2-дезоксирибоза, – перед названием нуклеозида ставится приставка ДЕЗОКСИ:

Пуриновые нуклеиновые основания - student2.ru

Пиримидиновые нуклеозиды получают окончание- ИДИН: цитидин, тимидин, уридин. Приставка дезокси- ставится только перед нуклеозидом, содержащим цитозин, т.к. тимин может соединяться только с 2- дезоксирибозой, а урацил только с рибозой.

Мононуклеотиды

Это продукты взаимодействия нуклеозидов с фосфорной к-той. H3PO4 присоединяется по 5-ому или 3-ему атому углерода пентозы сложноэфирной связью.

При названии мононуклеотидов к названию нуклеозида приписывается цифра 5¢ и слово "фосфат", обозначающее остаток фосфарной к-ты – PO3H2: цитидин – 5¢-фосфат, уридин -5¢-фосфат, аденозин -5¢-фосфат, дезоксигуанозин -5¢-фосфат, дезоксицитидин-5¢-фосфат. Мононуклеотиды являются структурными фрагментами НК, ферментов, витаминов (В2, НАД+).

Схема образования мононуклеотида:

Пуриновые нуклеиновые основания - student2.ru

Нуклеозид может присоединять два и три остатка фосфорной к-ты, образуя ди- и трифосфаты. При этом ангидридная связь между остатками фосфорной к-ты может быть макроэргической, т.е. содержать большой запас энергии. Это наблюдается в аденозинтрифосфате (АТФ). Одна такая связь при расщеплении выделяет » 32 кДж/моль.

Пуриновые нуклеиновые основания - student2.ru

Аденозинтрифосфат, аденозинтрифосфорная к-та, АТФ.

АТФ является аккумулятором энергии в организме, универсальным первоисточником фосфорной к-ты при различных жизненных процессах.

Строение НК

Первичная структура НК представляет собой длинную цепь мононуклеотидов. Мононуклеотиды связаны, между собой за счет остатков фосфорной к-ты 3¢, 5¢- сложноэфирной связью:

Пуриновые нуклеиновые основания - student2.ru

 
 
Аденозинтрифосфат, аденозинтрифосфорная к-та, АТФ

Структура молекулы ДНК

Английские ученые Дж. Уотсон и Ф. Крик (1953) предложили пространственную модель молекулы ДНК. Согласно этой модели, макромолекула представляет собой спираль, состоящую из двух полинуклеотидных цепей, закрученных вокруг общей оси. Пуриновые и пиримидиновые основания направлены, внутрь спирали. Между пуриновым основанием одной цепи и пиримидиновым основанием другой возникают водородные связи. Эти основания составляют комплементарные пары:

А=Т (соединены двумя Н- связями), ГºЦ (три Н-связи).

Т.о., вторичная структура ДНК- это двойная спираль, образующаяся за счет Н- связей между комплементарными парами гетероциклических оснований и сил Ван дер Ваальса между азотистыми основаниями.

Водородные связи образуются между – NH группой одного основания и

Пуриновые нуклеиновые основания - student2.ru

NH×××××: О=С
Пуриновые нуклеиновые основания - student2.ru
группой другого
С=О
Пуриновые нуклеиновые основания - student2.ru

Пуриновые нуклеиновые основания - student2.ru

NH×××: Nº.
Пуриновые нуклеиновые основания - student2.ru Пуриновые нуклеиновые основания - student2.ru Пуриновые нуклеиновые основания - student2.ru Пуриновые нуклеиновые основания - student2.ru , а также между амидными и имидными атомами азота

Н-связи стабилизируют двойную спираль.

Комплементарность цепей – химическая основа важнейших функций ДНК– хранения и передачи наследственных признаков. В ДНК содержатся всего четыре основания (А, Г, Ц, Т). Кодирующей единицей для каждой АК белка является триплет (код из трех оснований). Участок молекулы ДНК, содержащий в последовательности своих нуклеотидов информацию о последовательности аминокислотных звеньев в синтезируемом белке, называют геном. В макромолекуле ДНК содержится много генов.

Однако нуклеотидная последовательность ДНК под действием различных факторов может подвергаться изменениям, которые называют мутациями. Наиболее распространенный вид мутации – замена какой-либо пары оснований на другую. Причина – сдвиг таутомерного равновесия. Например, замена обычной пары Т-А на пару Т-Г. При накоплении мутаций возрастает число ошибок в биосинтезе белка. Вторая причина возникновения мутации – химические факторы, а также различные виды излучений. Мутации под действием химических соединений имеют большое значение для управления наследственностью с целью ее улучшения – селекция сельскохозяйственных культур, создание штаммов микроорганизмов, производящих антибиотики, витамины, кормовые дрожжи.

Макромолекула РНК, как правило, представляет собой одну полипептидную цепь, принимающую различные пространственные формы, в том числе и спиралеобразные.

Молекулы ДНК находятся в ядрах клеток, а синтез белка осуществляется в цитоплазме на рибосомах при участии РНК, которые копируют генетическую информацию, переносят ее к месту синтеза белка, участвуют в процессе синтеза белка.

Нуклеотиды имеют большое значение не только как строительный материал для НК. Они участвуют в биохимических процессах, например в энергетическом обмене клетки (АТФ), переносе фосфатных групп, в окислительно-восстановительных р-циях и др.

Успехи в изучении строения НК и их функции привели к развитию новой ветви биологический науки – генной инженерии, позволяющей управлять внутриклеточными процессами. Отсюда исключительные перспективы в решении проблем медицины (предупреждение и лечение болезней), промышленности (например, биотехнологии на основе использования новых микроорганизмов, которые, благодаря наличию новых генов, синтезируют новые соединения) и т.д. Эти научные достижения показывают, что в основе процессов жизнедеятельности организмов лежат реальные химические процессы, протекающие в клетках на молекулярном уровне.

Наши рекомендации