Оценка возможности возникновения механизма прогрессирующего обрушения первого типа.
Поскольку плиты перекрытий заведены в стены, а внутренняя поперечная стена не имеет дверного проема, первый механизм обрушения невозможен (см. п. 8 настоящего приложения).
2.3. Оценка возможности возникновения механизма прогрессирующего обрушения второго типа.
Расчет производится в соответствии с пп. 9 (см. рис. 13), 13 — 15 настоящего приложения.
2.3.1. Анализ сопротивления наружных стен. Поскольку в данном примере рассматривается здание с наружными стенами из железобетонных панелей, в соответствии с указаниями п. 14, расчет следует начинать с оценки сопротивления, прогрессирующему обрушению панелей наружных стен и лишь после этого переходить к проверке возможности образования различных типов механизмов прогрессирующего обрушения, изложенной в пп. 8 — 11. Оценка сопротивления наружных стеновых панелей прогрессирующему обрушению производится по формулам (22), (23).
Слева и справа одинаковые панели НС 1, их разрушение одинаково, предельные изгибающие моменты приняты по п. 2.1.1: M¢sup = M¢¢sup = 15,2 кН×м; M¢inf = 2,9кН×м; M¢¢inf = 0; lsup = 1,61 м; linf = 0,89 м; w = 1.
Работа внутренних сил определяется по формуле (23): W'w,ex = W¢¢w,ex = (15,2 × 2/1,61 + 2,9/0,89)1 = 22,1 кН, Ww,ex = 2 × 22,l = 2 кH.
Работа сил веса определяется по формуле (11) при G¢w,ex = G¢¢w,ex = 26,6 кН; Uw,ex = 2 × 0,5 × 26,6 × 1 = 26,6 кН.
Проверяется условие (25): Rw,ex = Ww,ex ‑ Uw,ex > 0, Rw,ex = 44,2 — 26,6 = 17,6 кН > 0.
Условие выполнено.
2.3.2. Сопротивление обрушению плит перекрытий. Плиты перекрытий заведены в наружные стены, поэтому для них определяется сопротивление их внешнего края по п. 15. Левая и правая плиты одинаковы, схемы излома их также одинаковы и показаны на рис. 13, в. Изгибающие моменты, воспринимаемые сечениями плиты П1, принимаются по п. 2.1.2: M¢1 = M¢2 = 0; М1 = 49,4 кН×м; М2 = 9,7 кН×м.
Сопротивление внешнего края плиты перекрытия, заведенного в наружные стены, подсчитывается по формуле (29) настоящего приложения, которая в случае M¢1 = M¢2 = 0 принимает вид WIIpi,bor = si(M1i/Li + M2i/li)wi/di, тогда при s1 = s2 = 0,6 м и d1 = d2 = l,61 м для каждой плиты получим:
WIIp1,bor = WIIp2,bor = 0,6/1,61(49,4/5,4 + 9,7/3) × = 4,6 кН; WIIp,bor = WIIp1,bor + WIIp2,bor = 2 × 4,6 = 9,2 кH.
Теперь по формуле (27) определяем Uw,ex = ‑Rw,ex ‑ Wp,bor = ‑17,6 ‑ 9,2 = ‑26,8 кН×м и далее весь расчет производится в соответствии с требованиями п. 9.
Работа внутренних и внешних сил на перемещениях плит перекрытий подсчитывается по формулам (15): WIIp = WIIp1 = WIIp2 = 0 при
М'11 = М¢12 = М'21 = М'22 = 0;
2.3.3. Работа связей определяется по формуле (13), которая при S3 = 0 примет вид: WIIt = S2y2/L.
В п. 2.1.3 определено S2 = 53,l кН; y2 = 2,6 м (высота стены); L = 5,4 м; WIIt = 53,1 × 2,6/5,4 = 25,5 кН.
2.3.4. Работа поперечной внутренней стены. Панель внутренней стены поворачивается как жесткий диск, при этом работа сил веса определяется по формуле (14) UIIw,in = Gw,inx/L + G1, где Gw,in = 54,9 кН; G1 = 2,2 кН; x = 0,5L; UIIw,in = 54,9 × 0,5 + 2,2 = 29,7 кН.
2.3.5. Проверка общего условия невозможности образования механизма второго типа. Проверка производится по формуле (12)
WIIt + WIIр > UIIw,in + UIIð + Uw,ex; WIIt + WIIр = 25,5 кН;
UIIw,in + UIIð + Uр,ex = 29,7 + 25 ‑ 26,8 = 27,9 кН > 25,5 кН.
Условие равновесия не выполняется. Необходимо или усилить связь второго типа, или поставить связи третьего типа.
В последнем случае необходимая несущая способность связей с учетом формулы (13) определяется S3 = (27,9 — 25,5)L/h = (2,4 × 5,4)/ 2,6 = 5 кН, что соответствует площади сечения стержня из стали А-I As = 5 × 10/235 = 0,21 см2.
2.4. Оценка возможности возникновения механизма прогрессирующего обрушения третьего типа. Проверка производится в соответствии с п. 10. Для третьего механизма обрушения рассматривается обрушение одних только плит перекрытий, расположенных непосредственно над выбитыми панелями, защемление плит в этих панелях не реализуется и в соответствии с требованиями п. 15 настоящего приложения в формулах (16) и (17) нужно принимать Uw,ex ‑ S4wwex = 0. Тогда формула (16) примет вид: WIIр ³ UIIð, где WIIр = 0, UIIð = 25 кН (см. п. 2.3.2).
Условие (16) не выполняется (0 < 25), следовательно, необходимо установить связи растяжения между плитой и вышерасположенной стеной. При установке на внешнем углу каждой плиты связи диаметром 10 мм из стали класса А-I получим S5 = 18,4 кН, x5 = L, w = 1. Тогда проверяется условие (17), которое при WIIр = 0 и Uw,ex ‑ S4wwex = 0 запишется WIIIt ³ UIIð, где WIIIt = nS5x5w/L = 2 × 18,4 = 36,8 кН > 25 кН, условие необрушения соблюдается.
2.5. Оценка возможности возникновения механизма прогрессирующего обрушения четвертого типа. Так как внутренняя поперечная стена не имеет проемов, а плиты перекрытий заведены в стены, этот механизм обрушения невозможен (см. п. 11).
3.Проверка устойчивости здания при локальном разрушении его несущих конструкций по схеме № 2. Рассматривается обрушение конструктивной ячейки в осях 2 — 5 и А — В (рис. 14) на i-м этаже здания. Первично разрушается панель внутренней стены по оси 3 между осями А и В и примыкающие к ней два простенка наружных стен по осям А и Б. Проверяется невозможность обрушения зависших над этим локальным разрушением конструкций перекрытий и стеновых панелей. Прогрессирующему разрушению в данном случае сопротивляются на каждом этаже панель внутренней стены; связи сдвига и растяжения, соединяющие ее с внутренними продольными стенами; плиты перекрытий слева и справа от оси 3; наружные стены и связи сдвига между наружными стенами и панелью внутренней стены.
Рис. 14. 2-я схема излома элементов фрагмента