Присваивание и Инициализация

Рассмотрим очень простой класс строк string:

struct string {

char* p;

int size; // размер вектора, на который указывает p

string(int sz) { p = new char[size=sz]; }

~string() { delete p; }

};


Строка - это структура данных, состоящая из вектора символов и длины этого вектора. Вектор создается конструктором и уничтожается деструктором. Однако, как показано в #5.10, это может привести к неприятностям. Например:

void f()

{

string s1(10);

string s2(20);

s1 = s2;

}


будет размещать два вектора символов, а присваивание s1=s2 будет портить указатель на один из них и дублировать другой. На выходе из f() для s1 и s2 будет вызываться деструктор и уничтожать один и тот же вектор с непредсказуемо разрушительными последствиями. Решение этой проблемы состоит в том, чтобы соответствующим образом определить присваивание объектов типа string:

struct string {

char* p;

int size; // размер вектора, на который указывает p

string(int sz) { p = new char[size=sz]; }

~string() { delete p; }

void operator=(string&)

};

void string::operator=(string& a)

{

if (this == &a) return; // остерегаться s=s;

delete p;

p=new char[size=a.size];

strcpy(p,a.p);

}


Это определение string гарантирует, и что предыдущий пример будет работать как предполагалось. Однако небольшое изменение f() приведет к появлению той же проблемы в новом облике:

void f()

{

string s1(10);

s2 = s1;

}


Теперь создается только одна строка, а уничтожается две. К неинициализированному объекту определенная пользователем операция присваивания не применяется. Беглый взгляд на string::operator=() объясняет, почему было неразумно так делать: указатель p будет содержать неопределенное и совершенно случайное значение. Часто операция присваивания полагается на то, что ее аргументы инициализированы. Для такой инициализации, как здесь, это не так по определению. Следовательно, нужно определить похожую, но другую, функцию, чтобы обрабатывать инициализацию:

struct string {

char* p;

int size; // размер вектора, на который указывает p

string(int sz) { p = new char[size=sz]; }

~string() { delete p; }

void operator=(string&)

string(string&);

};

void string::string(string& a)

{

p=new char[size=a.size];

strcpy(p,a.p);

}


Для типа X инициализацию тем же типом X обрабатывает конструктор X(X&). Нельзя не подчеркнуть еще раз, что присваивание и инициализация - разные действия. Это особенно существенно при описании деструктора. Если класс X имеет конструктор, выполняющий нетривиальную работу вроде освобождения памяти, то скорее всего потребуется полный комплект функций, чтобы полностью избежать побитового копирования объектов:

class X {

// ...

X(something); // конструктор: создает объект

X(&X); // конструктор: копирует в инициализации

operator=(X&); // присваивание: чистит и копирует

~X(); // деструктор: чистит

};


Есть еще два случая, когда объект копируется: как параметр функции и как возвращаемое значение. Когда передается параметр, инициализируется неинициализированная до этого переменная - формальный параметр. Семантика идентична семантике инициализации. То же самое происходит при возврате из функции, хотя это менее очевидно. В обоих случаях будет применен X(X&), если он определен:

string g(string arg)

{

return arg;

}

main()

{

string s = "asdf";

s = g(s);

}


Ясно, что после вызова g() значение s обязано быть "asdf". Копирование значения s в параметр arg сложности не представляет: для этого надо взывать string(string&). Для взятия копии этого значения из g() требуется еще один вызов string(string&); на этот раз инициализируемой является временная переменная, которая затем присваивается s. Такие переменные, естественно, уничтожаются как положено с помощью string::~string() при первой возможности.

Индексирование

Чтобы задать смысл индексов для объектов класса используется функция operator[]. Второй параметр (индекс) функции operator[] может быть любого типа. Это позволяет определять ассоциативные массивы и т.п. В качестве примера давайте перепишем пример из #2.3.10, где при написании небольшой программы для подсчета числа вхождений слов в файле применялся ассоциативный массив. Там использовалась функция. Здесь определяется надлежащий тип ассоциативного массива:

struct pair {

char* name;

int val;

};

class assoc {

pair* vec;

int max;

int free;

public:

assoc(int);

int& operator[](char*);

void print_all();

};


В assoc хранится вектор пар pair длины max. Индекс первого неиспользованного элемента вектора находится в free. Конструктор выглядит так:

assoc::assoc(int s)

{

max = (s<16) ? s : 16;

free = 0;

vec = new pair[max];

}


При реализации применяется все тот же простой и неэффективный метод поиска, что использовался в #2.3.10. Однако при переполнении assoc увеличивается:

#include

int assoc::operator[](char* p)

/*

работа с множеством пар "pair":

поиск p,

возврат ссылки на целую часть его "pair"

делает новую "pair", если p не встречалось

*/

{

register pair* pp;

for (pp=&vec[free-1]; vec<=pp; pp--)

if (strcmp(p,pp->name)==0) return pp->val;

if (free==max) { // переполнение: вектор увеличивается

pair* nvec = new pair[max*2];

for ( int i=0; iname = new char[strlen(p)+1];

strcpy(pp->name,p);

pp->val = 0; // начальное значение: 0

return pp->val;

}


Поскольку представление assoc скрыто, нам нужен способ его печати. В следующем разделе будет показано, как определить подходящий итератор, а здесь мы используем простую функцию печати:

vouid assoc::print_all()

{

for (int i = 0; i>buf) vec[buf]++;

vec.print_all();

}

Вызов Функции

Вызов функции, то есть запись выражение(список_выражений), можно проинтерпретировать как бинарную операцию, и операцию вызова можно перегружать так же, как и другие операции. Список параметров функции operator() вычисляется и проверяется в соответствие с обычными правилами передачи параметров. Перегружающая функция может оказаться полезной главным образом для определения типов с единственной операцией и для типов, у которых одна операция настолько преобладает, что другие в большинстве ситуаций можно не принимать во внимание.
Для типа ассоциативного массива assoc мы не определили итератор. Это можно сделать, определив класс assoc_iterator, работа которого состоит в том, чтобы в определенном порядке поставлять элементы из assoc. Итератору нужен доступ к данным, которые хранятся в assoc, поэтому он сделан другом:

class assoc {

friend class assoc_iterator;

pair* vec;

int max;

int free;

public:

assoc(int);

int& operator[](char*);

};


Итератор определяется как

class assoc_iterator{

assoc* cs; // текущий массив assoc

int i; // текущий индекс

public:

assoc_iterator(assoc& s) { cs = &s; i = 0; }

pair* operator()()

{ return (ifree)? &cs->vec[i++] : 0; }

};


Надо инициализировать assoc_iterator для массива assoc, после чего он будет возвращать указатель на новую pair из этого массива всякий раз, когда его будут активизировать операцией (). По достижении конца массива он возвращает 0:

main() // считает вхождения каждого слова во вводе

{

const MAX = 256; // больше самого большого слова

char buf[MAX];

assoc vec(512);

while (cin>>buf) vec[buf]++;

assoc_iterator next(vec);

pair* p;

while ( p = next() )

cout << p->name << ": " << p->val << "\n";

}


Итераторный тип вроде этого имеет преимущество перед набором функций, которые выполняют ту же работу: у него есть собственные закрытые данные для хранения хода итерации. К тому же обычно существенно, чтобы одновременно могли работать много итераторов этого типа.
Конечно, такое применение объектов для представления итераторов никак особенно с перегрузкой операций не связано. Многие любят использовать итераторы с такими операциями, как first(), next() и last() (первый, следующий и последний).

Класс Строка

Вот довольно реалистичный пример класса string. В нем производится учет ссылок на строку с целью минимизировать копирование и в качестве констант применяются стандартные символьные строки C++.

#include

#include

class string {

struct srep {

char* s; // указатель на данные

int n; // счетчик ссылок

};

srep *p;

public:

string(char *); // string x = "abc"

string(); // string x;

string(string &); // string x = string ...

string& operator=(char *);

string& operator=(string &);

~string();

char& operator[](int i);

friend ostream& operator<<(ostream&, string&);

friend istream& operator>>(istream&, string&);

friend int operator==(string& x, char* s)

{return strcmp(x.p->s, s) == 0; }

friend int operator==(string& x, string& y)

{return strcmp(x.p->s, y.p->s) == 0; }

friend int operator!=(string& x, char* s)

{return strcmp(x.p->s, s) != 0; }

friend int operator!=(string& x, string& y)

{return strcmp(x.p->s, y.p->s) != 0; }

};


Конструкторы и деструкторы просты (как обычно):

string::string()

{

p = new srep;

p->s = 0;

p->n = 1;

}

string::string(char* s)

{

p = new srep;

p->s = new char[ strlen(s)+1 ];

strcpy(p->s, s);

p->n = 1;

}

string::string(string& x)

{

x.p->n++;

p = x.p;

}

string::~string()

{

if (--p->n == 0) {

delete p->s;

delete p;

}

}


Как обычно, операции присваивания очень похожи на конструкторы. Они должны обрабатывать очистку своего первого (левого) операнда:

string& string::operator=(char* s)

{

if (p->n > 1) { // разъединить себя

p-n--;

p = new srep;

}

else if (p->n == 1)

delete p->s;

p->s = new char[ strlen(s)+1 ];

strcpy(p->s, s);

p->n = 1;

return *this;

}


Благоразумно обеспечить, чтобы присваивание объекта самому себе работало правильно:

string& string::operator=(string& x)

{

x.p->n++;

if (--p->n == 0) {

delete p->s;

delete p;

}

p = x.p;

return *this;

}


Операция вывода задумана так, чтобы продемонстрировать применение учета ссылок. Она повторяет каждую вводимую строку (с помощью операции <<, которая определяется позднее):

ostream& operator<<(ostream& s, string& x)

{

return s << x.p->s << " [" << x.p->n << "]\n";

}


Операция ввода использует стандартную функцию ввода символьной строки (#8.4.1).

istream& operator>>(istream& s, string& x)

{

char buf[256];

s >> buf;

x = buf;

cout << "echo: " << x << "\n";

return s;

}


Для доступа к отдельным символам предоставлена операция индексирования. Осуществляется проверка индекса:

void error(char* p)

{

cerr << p << "\n";

exit(1);

}

char& string::operator[](int i)

{

if (i<0 || strlen(p->s)s[i];

}


Головная программа просто немного опробует действия над строками. Она читает слова со ввода в строки, а потом эти строки печатает. Она продолжает это делать до тех пор, пока не распознает строку done, которая завершает сохранение слов в строках, или не встретит конец файла. После этого она печатает строки в обратном порядке и завершается.

main()

{

string x[100];

int n;

cout << "отсюда начнем\n";

for (n = 0; cin>>x[n]; n++) {

string y;

if (n==100) error("слишком много строк");

cout << (y = x[n]);

if (y=="done") break;

}

cout << "отсюда мы пройдем обратно\n";

for (int i=n-1; 0<=i; i--) cout << x[i];

}

Друзья и Члены

Теперь, наконец, можно обсудить, в каких случаях для доступа к закрытой части определяемого пользователем типа использовать члены, а в каких - друзей. Некоторые операции должны быть членами: конструкторы, деструкторы и виртуальные функции (см. следующую главу), но обычно это зависит от выбора.
Рассмотрим простой класс X:

class X {

// ...

X(int);

int m();

friend int f(X&);

};


Внешне не видно никаких причин делать f(X&) другом дополнительно к члену X::m() (или наоборот), чтобы реализовать действия над классом X. Однако член X::m() можно вызывать только для "настоящего объекта", в то время как друг f() может вызываться для объекта, созданного с помощью неявного преобразования типа. Например:

void g()

{

1.m(); // ошибка

f(1); // f(x(1));

}


Поэтому операция, изменяющее состояние объекта, должно быть членом, а не другом. Для определяемых пользователем типов операции, требующие в случае фундаментальных типов операнд lvalue (=, *=, ++ и т.д.), наиболее естественно определяются как члены.
И наоборот, если нужно иметь неявное преобразование для всех операндов операции, то реализующая ее функция должна быть другом, а не членом. Это часто имеет место для функций, которые реализуют операции, не требующие при применении к фундаментальным типам lvalue в качестве операндов (+, -, || и т.д.).
Если никакие преобразования типа не определены, то оказывается, что нет никаких существенных оснований в пользу члена, если есть друг, который получает ссылочный параметр, и наоборот. В некоторых случаях программист может предпочитать один синтаксис вызова другому. Например, оказывается, что большинство предпочитает для обращения матрицы m запись m.inv(). Конечно, если inv() действительно обращает матрицу m, а не просто возвращает новую матрицу, обратную m, ей следует быть другом.
При прочих равных условиях выбирайте, чтобы функция была членом: никто не знает, вдруг когда-нибудь кто-то определит операцию преобразования. Невозможно предсказать, потребуют ли будущие изменения изменить статус объекта. Синтаксис вызова функции члена ясно указывает пользователю, что объект можно изменить; ссылочный параметр является далеко не столь очевидным. Кроме того, выражения в члене могут быть заметно короче выражений в друге. В функции друге надо использовать явный параметр, тогда как в члене можно использовать неявный this. Если только не применяется перегрузка, имена членов обычно короче имен друзей.

Предостережение

Как и большая часть возможностей в языках программирования, перегрузка операций может применяться как правильно, так и неправильно. В частности, можно так воспользоваться возможность определять новые значения старых операций, что они станут почти совсем непостижимы. Представьте, например, с какими сложностями столкнется человек, читающий программу, в которой операция + была переопределена для обозначения вычитания.
Данный аппарат должен уберечь программиста/читателя от худших крайностей применения перегрузки, потому что программист предохранен от изменения значения операций для основных типов данных вроде int, а также потому, что синтаксис выражений и приоритеты операций сохраняются.
Может быть. разумно применять перегрузку операций главным образом так, чтобы подражать общепринятому применению операций. В тех случаях, когда нет общепринятой операции или имеющееся в C++ множество операций не подходит для имитации общепринятого применения, можно использовать запись вызова функции.

Упражнения

1. (*2) Определите итератор для класса string. Определите операцию конкатенации + и операцию "добавить в конец" +=. Какие еще операции над string вы хотели бы осуществлять?

2. (*1.5) Задайте с помощью перегрузки () операцию выделения подстроки для класса строк.

3. (*3) Постройте класс string так, чтобы операция выделения подстроки могла использоваться в левой части присваивания. Напишите сначала версию, в которой строка может присваиваться подстроке той же длины, а потом версию, где эти длины могут быть разными.

4. (*2) Постройте класс string так, чтобы для присваивания, передачи параметров и т.п. он имел семантику по значению, то есть в тех случаях, когда копируется строковое представление, а не просто управляющая структура данных класса sring.

5. (*3) Модифицируйте класс string из предыдущего примера таким образом, чтобы строка копировалась только когда это необходимо. То есть, храните совместно используемое представление двух строк, пока одна из этих строк не будет изменена. Не пытайтесь одновременно с этим иметь операцию выделения подстроки, которая может использоваться в левой части.

6. (*4) Разработайте класс string с семантикой по значению, копированием с задержкой и операцией подстроки, которая может стоять в левой части.

7. (*2) Какие преобразования используются в каждом выражении следующей программы:

struct X {

int i;

X(int);

operator+(int);

};

struct Y {

int i;

Y(X);

operator+(X);

operator int();

};

X operator* (X,Y);

int f(X);

X x = 1;

Y y = x;

int i = 2;

main()

{

i + 10;

y + 10;

y + 10 * y;

x + y + i;

x * x + i;

f(7);

f(y);

y + y;

106 + y;

}


Определите X и Y так, чтобы они оба были целыми типами. Измените программу так, чтобы она работала и печатала значения всех допустимых выражений.

8. (*2) Определите класс INT, который ведет себя в точности как int. Подсказка: определите INT::operator int().

9. (*1) Определите класс RINT, который ведет себя в точности как int за исключением того, что единственные возможные операции - это + (унарный и бинарный), - (унарный и бинарный), *, /, %. Подсказка: не определяйте $ (R?)INT::operator int().

10. (*3) Определите класс LINT, ведущий себя как RINT за исключением того, что имеет точность не менее 64 бит.

11. (*4) Определите класс, который реализует арифметику с произвольной точностью. Подсказка: вам надо управлять памятью аналогично тому, как это делалось для класса string.

12. (*2) Напишите программу, доведенную до нечитаемого состояния с помощью макросов и перегрузки операций. Вот идея: определите для INT + чтобы он означал - и наоборот, а потом с помощью макроопределения определите int как INT. Переопределение часто употребляемых функций, использование параметров ссылочного типа и несколько вводящих в заблуждение комментариев помогут устроить полную неразбериху.

13. (*3) Поменяйтесь со своим другом программами, которые у вас получились в предыдущем упражнении. Не запуская ее попытайтесь понять, что делает программа вашего друга. После выполнения этого упражнения вы будете знать, чего следует избегать.

14. (*2) Перепишите примеры с comlpex (#6.3.1), tiny (#6.3.2) и string (#6.9) не используя friend функций. Используйте только функции члены. Протестируйте каждую из новых версий. Сравните их с версиями, в которых используются функции друзья. Еще раз посмотрите Упражнение 5.3.

15. (*2) Определите тип vec4 как вектор их четырех float. Определите operator[] для vec4. Определите операции +, -, *, /, =, +=, -=, *=, /= для сочетаний векторов и чисел с плавающей точкой.

16. (*3) Определите класс mat4 как вектор из четырех vec4. Определите для mat4 operator[], возвращающий vec4. Определите для этого типа обычные операции над матрицами. Определите функцию, которая производит исключение Гаусса для mat4.

17. (*2) Определите класс vector, аналогичный vec4, но с длиной, которая задается как параметр конструктора vector::vector(int).

18. (*3) Определите класс matrix, аналогичный mat4, но с размерностью, задаваемой параметрами конструктора matrix::matrix(int,int).

*1В некоторых системах компоновщик настолько "умен", что ругается, даже если не определена неиспользуемая функция. В таких системах этим методом воспользоваться нельзя. (прим автора)

[Назад] [Содержание] [Вперед]

Глава 7

Производные Классы

Не надо размножать объекты без необходимости - У. Оккам

В этой главе описывается понятие производного класса в C++. Производные классы дают простой, гибкий и эффективный аппарат задания для класса альтернативного интерфейса и определения класса посредством добавления возможностей к уже имеющемуся классу без перепрограммирования или перекомпиляции. С помощью производных классов можно также обеспечить общий интерфейс для нескольких различных классов так, чтобы другие части программы могли работать с объектами этих классов одинаковым образом. При этом обычно в каждый объект помещается информация о типе, чтобы эти объекты могли обрабатываться соответствующим образом в ситуациях, когда их тип нельзя узнать во время компиляции. Для элегантной и надежной обработки таких динамических зависимостей типов имеется понятие виртуальной функции. По своей сути производные классы существуют для того, чтобы облегчить программисту формулировку общности.

Введение

Представим себе процесс написания некоторого средства общего назначения (например, тип связанный список, таблица имен или планировщик для системы моделирования), которое предназначается для использования многими разными людьми в различных обстоятельствах. Очевидно, что в кандидатах на роль таких средств недостатка нет, и выгоды от их стандартизации огромны. Кажется, любой опытный программист написал (и отладил) дюжину вариантов типов множества, таблицы имен, сортирующей функции и т.п., но оказывается, что таблиц имен каждый программист и каждая программа используют свою версию этих понятий, из-за чего программы слишком трудно читать, тяжело отлаживать и сложно модифицировать. Более того, в большой программе вполне может быть несколько копий идентичных (почти) частей кода для работы с такими фундаментальными понятиями.
Причина этого хаоса частично состоит в том, что представить такие общие понятия в языке программирования сложно с концептуальной точки зрения, а частично в том, что средства, обладающие достаточной общностью, налагают дополнительные расходы по памяти и/или по времени, что делает их неудобными для самых простых и наиболее напряженно используемых средств (связанные списки, вектора и т.п.), где они были бы наиболее полезны. Понятие производного класса в C++, описываемое в #7.2, не обеспечивают общего решения всех этих проблем, но оно дает способ справляться с довольно небольшим числом важных случаев. Будет, например, показано, как определить эффективный класс общего связанного списка таким образом, чтобы все его версии использовали код совместно.
Написание общецелевых средств - задача непростая, и часто основной акцент в их разработке другой, чем при разработке программ специального назначения. Конечно, нет четкой границы между средствами общего и специального назначения, и к методам и языковым средствам, которые описываются в этой главе, можно относиться так, что они становятся все более полезны с ростом объема и сложности создаваемых программ.

Производные Классы

  7.2.1 Построение Производного Класса
  7.2.2 Функции Члены
  7.2.3 Видимость
  7.2.4 Указатели
  7.2.5 Иерархия Типов
  7.2.6 Конструкторы и Деструкторы
  7.2.7 Поля Типа
  7.2.8 Виртуальные Функции

Чтобы разделить задачи понимания аппарата языка и методов его применения, знакомство с понятием производных классов делается в три этапа. Вначале с помощью небольших примеров, которые не надо воспринимать как реалистичные, будут описаны сами средства языка (запись и семантика). После этого демонстрируются некоторые неочевидные применения производных классов, и, наконец, приводится законченная программа.

Наши рекомендации