Основы алгоритмической культуры
Выпускник научится:
• понимать термины «исполнитель», «состояние исполнителя», «система команд»; понимать различие между непосредственным и программным управлением исполнителем;
• строить модели различных устройств и объектов в виде исполнителей, описывать возможные состояния и системы команд этих исполнителей;
• понимать термин «алгоритм»; знать основные свойства алгоритмов (фиксированная система команд, пошаговое выполнение, детерминированность, возможность возникновения отказа при выполнении команды);
• составлять неветвящиеся (линейные) алгоритмы управления исполнителями и записывать их на выбранном алгоритмическом языке (языке программирования);
• использовать логические значения, операции и выражения с ними;
• понимать (формально выполнять) алгоритмы, описанные с использованием конструкций ветвления (условные операторы) и повторения (циклы), вспомогательных алгоритмов, простых и табличных величин;
• создавать алгоритмы для решения несложных задач, используя конструкции ветвления (условные операторы) и повторения (циклы), вспомогательные алгоритмы и простые величины;
• создавать и выполнять программы для решения несложных алгоритмических задач в выбранной среде программирования.
Выпускник получит возможность:
•познакомиться с использованием строк, деревьев, графов и с простейшими операциями с этими структурами;
• создавать программы для решения несложных задач, возникающих в процессе учебы и вне её.
Использование программных систем и сервисов
Выпускник научится:
• базовым навыкам работы с компьютером;
• использовать базовый набор понятий, которые позволяют описывать работу основных типов программных средств и сервисов (файловые системы, текстовые редакторы, электронные таблицы, браузеры, поисковые системы, словари, электронные энциклопедии);
• знаниям, умениям и навыкам, достаточным для работы на базовом уровне с различными программными системами и сервисами указанных типов; умению описывать работу этих систем и сервисов с использованием соответствующей терминологии.
Выпускник получит возможность:
• познакомиться с программными средствами для работы с аудио-визуальными данными и соответствующим понятийным аппаратом;
• научиться создавать текстовые документы, включающие рисунки и другие иллюстративные материалы, презентации и т. п.;
• познакомиться с примерами использования математического моделирования и компьютеров в современных научно-технических исследованиях (биология и медицина, авиация и космонавтика, физика и т. д.).
Работа в информационном пространстве
Выпускник научится:
• базовым навыкам и знаниям, необходимым для использования интернет-сервисов при решении учебных и внеучебных задач;
• организации своего личного пространства данных с использованием индивидуальных накопителей данных, интернет-сервисов и т. п.;
• основам соблюдения норм информационной этики и права.
Выпускник получит возможность:
• познакомиться с принципами устройства Интернета и сетевого взаимодействия между компьютерами, методами поиска в Интернете;
• познакомиться с постановкой вопроса о том, насколько достоверна полученная информация, подкреплена ли она доказательствами; познакомиться с возможными подходами к оценке достоверности информации (оценка надёжности источника, сравнение данных из разных источников и в разные моменты времени и т. п.);
• узнать о том, что в сфере информатики и информационно-коммуникационных технологий (ИКТ) существуют международные и национальные стандарты;
• получить представление о тенденциях развития ИКТ.
Физика
Механические явления
Выпускник научится:
• распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и равноускоренное прямолинейное движение, свободное падение тел, невесомость, равномерное движение по окружности, инерция, взаимодействие тел, передача давления твёрдыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твёрдых тел, колебательное движение, резонанс, волновое движение;
• описывать изученные свойства тел и механические явления, используя физические величины: путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость её распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;
• анализировать свойства тел, механические явления и процессы, используя физические законы и принципы: закон сохранения энергии, закон всемирного тяготения, равнодействующая сила, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;
• различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчёта;
• решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, амплитуда, период и частота колебаний, длина волны и скорость её распространения): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.
Выпускник получит возможность научиться:
• использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
• приводить примеры практического использования физических знаний о механических явлениях и физических законах; использования возобновляемых источников энергии; экологических последствий исследования космического пространства;
• различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, закон Архимеда и др.);
• приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
• находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний по механике с использованием математического аппарата, оценивать реальность полученного значения физической величины.
Тепловые явления
Выпускник научится:
• распознавать тепловые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объёма тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твёрдых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи;
• описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;
• анализировать свойства тел, тепловые явления и процессы, используя закон сохранения энергии; различать словесную формулировку закона и его математическое выражение;
• различать основные признаки моделей строения газов, жидкостей и твёрдых тел;
• решать задачи, используя закон сохранения энергии в тепловых процессах, формулы, связывающие физические величины (количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.
Выпускник получит возможность научиться:
• использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания (ДВС), тепловых и гидроэлектростанций;
• приводить примеры практического использования физических знаний о тепловых явлениях;
• различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;
• приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
• находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.