Биологическая роль углеводов

Биологическая роль углеводов

n Энергетическая – окисление нейтральных моносахаридов

n Пластическая – структурно-функциональные компоненты клеток и тканей

Классификация углеводов

n Моносохариды

n Дисахариды

n Полисахариды

N Нейтральные моносахариды

N рибоза, дезоксирибоза (компоненты РНК, ДНК и коферментов нуклеотидной природы)

n глюкоза (в свободном виде присутствует во фруктовых соках, в плазме крови, а также является структурным компонентом многих дисахаридов и полисахаридов)

n

n фруктоза (всвободном виде присутствует во фруктовых соках и в меде, а также является структурным компонентом сахарозы и многих растительных полисахаридов)

n галактоза (входит в состав молочного сахара, являясь компонентом пищевого рациона, а также является структурным компонентом многих полисахаридов)

N Кислые моносохариды

N глюкуроновая кислота

N галактуроновая кислота

N идуроновая кислота

(служат типичными структурными звеньями глюкозаминогликанов соединительной ткани)

n Щелочные моносахариды–

N ацетил-глюкозамин

N ацетил-галактозамин

(входят в состав гликопротеинов )

Дисахариды

n Мальтоза(глюкоза - глюкоза)

n Лактоза(глюкоза - галактоза)

n Сахароза(глюкоза - фруктоза)

(являются важнейшими компонентами углеводной пищи)

Полисахариды

n Гомополисахариды

n гликоген

(важнейший резервный полисахарид, содержащийся в печени и мышцах)

n крахмал

(важнейший углеводный компонент пищевого рациона)

Переваривание углеводов

n Ротовая полость, a-амилаза расщепляет a-1,4-гликозидные связи, образуя дисахариды и декстрины (полисахаридные фрагменты различной протяженности)

n Желудок -----

n Тонкий кишечник

n a-амилаза (панкреатическая) расщепляет a-1,4-гликозидные связи, образуя дисахариды

n сахаразо-изомальтазный комплексрасщепляет a-1,6-гликозидные связи

n лактазарасщепляет лактозу

Переваривание кражмала (и кликогена) начинает 2 аминолаза (в смоле) 1-я фаза распада и образования декстринов (ив небольшом количестве мальтоза). Желудочный сок не содержит ферментов сам по себе, так кислая среда (РН 1,5-2,5). Только в более глубоких слоях пищевого комка, куда не проникает желудочный сок действие домилазы продолжается (расщепление с образованием декстринов и мальтозы).Далее в двенадцатиперстной кишке, панкреатич-я 2 амилаза поджелудочного сока, РН – нейтр., превращается в мальтозу; так же ферменты амило-1, 6-гликозидаза и олиго-1 гидролизируют 2(1-6) – гликозидн. связи в гликогене.Мальтоза быстро гидролизирует ферментом мальтозы (2-глюкозидазы) на 2 мол-ле глюкозы. Кишечный сок так же содержит активную сахарозу, под влиянием которой образуется глюкоза и фруктоза. Лактоза под воздействием лактозы кишечн. сока расщепляется на глюкозу и галактозу.

В конце концов углеводы пищи распадаются на состав. их моносах. (преимущ-но глюкоза, фруктоза и галактоза), которые всасываются кишечной стенкой и затем попадают в кровь.Всасывание маклозы, кмлозы и арабинозы осущ-ся преимущественно путем диффузии, всасывание же большинства других моносах. происходит за счет активного транспорта – ионы Na. Углеводы и Na образуют комплексное соединение, которое транспортирует внутрь клетки. Затем комплекс распадается, а освобожденный ион Na транспортируется обратно. Ион Na активизирует АТФ-азуЮ благодаря чему ускоряется распад АТФ и освобождается необходимая для всасывания энергия.Становление процессов переваривания и всасывания в антогенезе.

У плода основная потребность в энергии обеспечивается за счет гликолиза, т.к. ферм. дых-я и ок-го фосфорилиров-я функционируют недостаточно. У новорожденного отмечается склонность к накоплению лактозы (метаболич. ацидоз). У взрослых норма содержания лактата – 8 мг%, у детей – 18-22 мг%. Это объясняется физиологич. гипоксией в связи с особенностями строения гемоглобина у детей. В момент родов в крови у новорожденного содержание сахара соответствует количеству у матери (100 мг%). Затем снижается в первые 3-5 часов до 60 мг%, на 5-6 день 75 мг%. После первого года жизни сахар в крови возрастает волнообразно (1-я волна к 6-ти годам, 2-я – к 12 годам) в период усиленного роста, к 15-ти годам устанавливается до 100 мг%. Гликемич-я кривая у детей после однократной нагрузки как у взрослых, но у детей кривые ниже, т.к. повышена способность ассимилировать глюкозу. Этим объясняется так же высокий печеночный порог.Печеночный порог у детей 190-230 мг% (у взрослых – 180 мг%). Грудной ребенок переносит большие количества сахара, чем взрослые.

4Гликоген, строение, биороль, места накопления. Синтез и распад гликогена, ключевые ферменты, пути регуляции.

Процесс анаэробного распада гликогена получил название гликогенолиза. Вовлечение D-глюкоза единицы гликогена в процесс гликолиза происходит при участии 3 ферментов – гликогенфосфорилазы. Образующийся в ходе фосфоглюколизтарного р-и глюкозо-6-фосфат может включать в процесс гликолиза. После образования 2-6 форм дальнейшие пути гликолиза и гликогенолиза полностью совпадают. В процессе гликолиза в виде макроэрг-соединений накапливается не 2, а 3 АТФ.

Синтез гликогена: в 2-х видах классов, в мышцах, в скелетных мышцах, это гомополисах. полимер глюкозы. Соединены L-1, 4 глюкоз. связью. Она придает линейность структуре, имеет древовидную структуру. Из гликогена могут освоб-ся глюкозо-6-фосфат. Хорошо растворим.

Основное место – клетки печени и скелетных мускул. Основной момент – гиполикемия. После образования глюкозо-6-фосфат, под действием ф-та гликоген-синтетазы происходит смещение остатка на цело, удлинение полимера на 1 молекулу глюкозы. Синтез гликогена с затратой энергии и для присоединения 1 остатка глюкозы необходимо 2 молекулы АТФ.

Фрагмент молекулы гликогена

n Локализация синтеза гликогена – мышцы и печень

n Биологическая роль гликогена – энергетическая

n Мышечные клетки используют при распаде гликогена глюкозу как энергетический субстрат

n Клетки печени при распаде гликогена отдают глюкозу в кровь для клеток других органов и тканей.

Синтез гликогена

n После образования глюкозо-6-фосфата (гексокиназная реакция) происходит внутримолекулярный перенос остатка фосфорной кислоты из 6-го положения в 1-е При этом образуется глюкозо-1-фосфат

n Затем происходит дополнительная активация глюкозного фрагмента - УДФ-глюкоза

n УДФ-глюкозный остаток переносится на молекулу гликогена

Регуляция синтеза гликогена

n Ключевым ферментом синтеза гликогена является гликогенсинтаза

n гликогенсинтаза активируется избытком глюкозо-6-фосфата и гормоном инсулином

n гликогенсинтаза ингибируется адреналином

Распад гликогена

Регуляция распада гликогена

n Ключевым ферментом распада гликогена является гликогенфосфорилаза

n Гликогенфосфорилаза активируется недостатком АДФ и гормоном адреналином

n Гликогенфосфорилаза ингибируется избытком АТФ и гормоном инсулином

n Схемы- учебник стр. 326, 327

N Лактат

N Пируват

N Глицерин

N Аминокислоты

Первый обходной путь глюконеогенеза:

Второй обходной путь глюконеогенеза:

Третий обходной путь глюконеогенеза:

Биологическая роль глюконеогенеза:

Инсулин

Глюкагон и адреналин

Глюкокортикоиды

N Ингибирует гексокиназу

Непереносимость фруктозы

n Наследственная недостаточность фруктозо-1-фосфатальдалазы

n В этом случае при наличие в пище фруктозы, в тканях накапливается фруктозо-1-фосфат, который ингибирует альдолазу (реакция гликолиза)

Галактоземия

n Наследственная недостаточность галактозо-1-фосфат-уридилтрансферазы, которая активирует галактозу для дальнейшего метаболизма

Сахарный диабет

N Отсутствие инсулина

N Инсулинорезистентность

n Прежде всего сахарный диабет определяется стойкой гипергликемией

Биологическая роль углеводов

n Энергетическая – окисление нейтральных моносахаридов

n Пластическая – структурно-функциональные компоненты клеток и тканей

Классификация углеводов

n Моносохариды

n Дисахариды

n Полисахариды

N Нейтральные моносахариды

Наши рекомендации