Неподвижные точки различных видов движений пространства.
Найдём множества неподвижных точек различных видов движений:
- Тождественное преобразование. Множеством неподвижных точек тождественного преобразования является всё пространство.
- Параллельный перенос. Если , то - тождественное преобразование и неподвижными будут все точки пространства. Если , то у нет неподвижных точек.
- Поворот вокруг оси, осевая симметрия. Если угол поворота равен 2πk ( ), то он является тождественным преобразованием. Тогда неподвижны все точки. Если угол поворота не равен 2πk ( ) (в частности, если он является осевой симметрией), то множеством неподвижных точек является ось симметрии.
- Центральная симметрия. Неподвижной точкой является только центр симметрии.
- Зеркальная симметрия. Неподвижными точками являются точки плоскости симметрии.
- Переносная симметрия, поворотная симметрия, винтовое движение.
- У переносной симметрии неподвижных точек нет
- У винтового движения неподвижных точек нет.
- У поворотной симметрии единственная неподвижная точка .
Наглядно вывод можно представить в виде следующей таблицы (для всех преобразований мы не берём в расчёт их частный случай, когда они являются тождественными):
Впоследствии мы докажем, что движения пространства ограничиваются перечисленными в таблице. Поэтому наша таблица полная.
Теперь докажем несколько теорем, которые нам понадобятся в дальнейшем.
Теорема 4.1. (признак поворота) Если множеством неподвижных точек движения является прямая ℓ, то это движение – поворот около прямой ℓ.
Доказательство. Из аналогичной теоремы на плоскости следует, что в каждой плоскости, перпендикулярной ℓ, происходит поворот. Все эти повороты происходят на один и тот же угол, т.к. каждая плоскость, содержащая ℓ, как легко показать, при нашем движении переходит в плоскость, также содержащую ℓ. Значит, наше движение – поворот около ℓ.
Теорема 4.2. (признак зеркальной симметрии) Если множеством неподвижных точек движения является плоскость α, то это движение – симметрия относительно плоскости α.
Доказательство. Пусть α – плоскость неподвижных точек, Х – произвольная точка пространства, не лежащая в α. Опустим перпендикуляр ℓ из Х на α. Прямая ℓ при нашем движении переходит в себя, так как она остаётся перпендикулярной плоскости α и проходит через ту же точку (назовём её О) плоскости α (потому что эта точка неподвижна). Тогда Х´, образ точки Х при нашем движении, лежит на прямой ℓ. При этом ОХ´=ОХ, т.е. Х´ симметрична Х относительно плоскости α. Таким образом, наше движение – симметрия относительно плоскости α.
Теорема о задании движения.
Теорема 5.1. (теорема о задании движения) Если даны два тетраэдра ABCD и A´B´C´D´ с соответственно равными рёбрами, то существует одно и только одно движение пространства, отображающее точки A, B, C, D соответственно на точки A´, B´, C´, D´.
Доказательство.
I. Существование. Если А совпадает с А´, В – с B´, С – с C´, D – с D´, то задано просто тождественное преобразование. Если нет, то положим для определённости, что А не совпадает с А´. Рассмотрим плоскость α симметрии точек А и А´. Пусть симметрия Sα переводит тетраэдр ABCD в тетраэдр A´B1C1D1.
Теперь, если В1 совпала с В´, С1 – с С´, D1 – с D´, то доказательство завершено. Если нет, то можно без ограничения общности считать, что точки В´ и В1 не совпали. Рассмотрим плоскость β симметрии точек B1 и B´. Точка A´ – равноудалена от точек В1 и В´, следовательно лежит на плоскости β. Пусть симметрия Sβ переводит тетраэдр A´B1C1D1 в тетраэдр A´B´C2D2.
Теперь, если С2 совпала с С´, а D2 – с D´, то доказательство завершено. Если нет, то можно без ограничения общности считать, что точки С´ и С2 не совпали. Рассмотрим плоскость γ симметрии точек С2 и С´. Точки А´, В´ равноудалены от точек С2 и С´, поэтому лежат в плоскости γ. Пусть симметрия Sγ переводит тетраэдр A´B´C2D2 в тетраэдр A´B´C´D3.
Теперь, если D3 совпала с D´, то доказательство завершено. Если нет, то рассмотрим плоскость δ симметрии точек D3 и D´. Точки А´, В´, С´ равноудалены от точек D3 и D´, поэтому лежат в плоскости δ. Значит, симметрия Sδ переводит тетраэдр A´B´C´D3 в тетраэдр A´B´C´D´.
Итак, композиция нужного числа приведённых зеркальных симметрий переводит тетраэдр ABCD в тетраэдр A´B´C´D´. А это преобразование является движением (свойство 2 движений).
II. Единственность. Пусть существуют 2 движения f и g, переводящие А в А´, В в В´, С в С´, D в D´. Тогда движение является тождественным преобразованием, т.к. оставляет точки А, B, C, D неподвижными. Значит, f=g.
При доказательстве теоремы 5.1 (существование), фактически была доказана и
Теорема 5.2. Любое движение пространства есть композиция не более четырёх зеркальных симметрий.