Колебания уровня воды в реках

В зависимости от характера питания, времени года и фазы вод­ного режима уровни воды в различных реках имеют значительные ко­лебания, достигающие в отдельных случаях 30 м. Например, годовая амплитуда колебаний уровней воды на р. Енисее с 4,5. м в истоке по­степенно увеличивается и в нижнем течении достигает 20 м. Лишь в устьевой части амплитуда снижается до 9—10 м.

Основные причины, вызывающие колебания уровней воды в ре­ках, следующие: изменение расходов воды в реке за счет дождей, тая­ния снега и др.; сгонные и нагонные ветры; заграждение русла реки льдом (заторы); действие приливов и отливов в устьях рек; подпоры воды в устьях притоков; режим работы гидроузлов (попуски воды) и т. д.

Поверхность речного потока непрерывно понижается от истока к устью. Степень понижения характеризуется падением и продольным уклоном поверхности воды.

Падением h (рис. 5) уровня воды называется разность между его абсолютными отметками Н- и Нч в двух пунктах (Л и Б), распо­ложенных вдоль реки на расстоянии /. Падение может характеризо­ваться величиной (обычно в сантиметрах), приходящейся на 1 км дли­ны участка реки. Например, среднее падение р. Оби на 1 км равно 4 см.

Продольным уклоном / поверхности воды в реке называется от­ношение падения h на данном участке к длине этого участка l (длина

участка и падение должны быть выражены в одной и той же размер­ности), причем

Колебания уровня воды в реках - student2.ru

Уклон выражается безразмерной величиной (десятичной дробью). Меженные уклоны Волги у Горького равны 0,00005, Северной Двины у Березников — 0,00003, Дона у Калача — 0,00001 и т. д.

Величина продольных уклонов поверхности воды в реках зависит от высоты уровня воды, вида продольного профиля реки, плановых очертаний русла и т. д. При низких уровнях воды уклон меньше, причем, как правило, уклон на плесе меньше, чем на перекатах. При увеличении расхода и подъеме уровня уклоны на плесах увеличивают­ся, а на перекатах — уменьшаются. При дальнейшем повышении уровня уклоны на плесах могут сравняться с уклонами на перекатах. При еще большем повышении уровня уклоны на плесе увеличиваются, а на перекатах — уменьшаются. Обычно в половодье уклоны бывают больше на плесе и меньше на перекате.

После выхода воды из русла и разлива ее по пойме уклоны будут зависеть от очертаний долины в плане. Где долина уже, там будет больший поверхностный уклон, где она расширяется — меньше.

Скорости течения воды в реке зависят от продольного уклона. Чем больше уклон, тем больше скорость течения и наоборот. Поэтому в межень скорость течения на перекатах больше, чем на плесах, а в половодье — наоборот.

Колебания уровня воды в реках - student2.ru

Поверхность воды в реке имеет также и поперечные уклоны, возникающие на закруглениях русла, при резких подъемах и спадах воды, а также вследствие вра­щения Земли.

На прямолинейном уча­стке реки на частицы воды действует сила тяжести G, равная произведению массы т частицы воды на g — ускорение свободно падающе­го тела (g = 9,81 м/с2), т. е.

Поверхность воды в этом случае на поперечном профиле занимает го­ризонтальное положение ab (рис. 6).

Рис. 6. Схема образования попе­речного уклона поверхности во­ды на закруглениях русла:

ab — положение уровня на прямоли­нейном участке русла; cd — то же на криволинейном участке русла; R — радиус кривизны русла; G — сила тя­жести

На закруглениях русла те же частицы воды, кроме силы тяжести, подвергаются действию цен­тробежной силы / (см. рис. 6), на­правленной по радиусу кривизны русла в сторону вогнутого берега. При этом

/= mv /R, (3).

где т — масса частицы воды;

v — скорость речного потока;

R — радиус кривизны русла.

Силы / и G заменим равнодействующей силой г. Под действием центробежной силы часть воды будет смещаться к вогнутому берегу, вследствие чего образуется поперечный уклон и уровень займет поло­жение cd, перпендикулярное направлению равнодействующей г (см. рис. 6). Значение поперечного уклона может быть выражено сле­дующим уравнением:

Колебания уровня воды в реках - student2.ru

Заменим / и G их значениями из выражений (2) и (3), тогда

Колебания уровня воды в реках - student2.ru

Треугольники d0b и dee подобны. Сторона се почти равна ширин» В русла. На основании подобия треугольников можно написать

Колебания уровня воды в реках - student2.ru

На основании формул (5) и (6) повышение уровня A/l у вогнутого берега (по сравнению с уровнем воды у выпуклого берега) определяет­ся по формуле

Колебания уровня воды в реках - student2.ru

Если для реки, имеющей ширину 100 .м, скорость течения 2 м/с и радиус изгиба 200 м, провести расчет по формуле (7), то повышение уровня у вогнутого берега (по сравнению с уровнем у выпуклого) составит примерно 20 см.

При резких подъемах и спадах воды так­же возникает уклон. Вода при резкой прибыли быстрее заполняет сред­нюю часть русла и поверхность ее становится выпуклой. Это объясня­ется тем, что вода встречает меньшее сопротивление на середине рус­ла, чем у берегов. При резкой убыли вода быстрее уходит из средней части русла, где также встречает меньшее сопротивление, чем у бере­гов, поэтому поверхность ее становится вогнутой.

Такие явления наблюдаются в начальный период резкого подъе­ма или спада уровня. В дальнейшем подъем и спад происходит при относительно горизонтальной поверхности свободного потока.

Уклон вследствие вращения Земли (закон Бэра) имеет следующие предпосылки. Каждая точка земной поверх­ности совершает за сутки один полный оборот, но круговой путь при этом проделывает разный. Следовательно, и скорость движения точек Земли неодинакова и зависит от того, ближе или дальше от экватора по направлению к полюсам расположена эта точка. Очевидно, что ок­ружная скорость движения точек больше у экватора и меньше по направлению к полюсам.

Таким образом, реки северного полушария, текущие с юга на се­вер, будут переходить из области больших скоростей в область меньших, а реки, текущие с севера на юг — из области меньших скоростей в область больших.

При появлении ускорения возникает сила инерции, которая всегда направлена в сторону, противоположную ускорению. Поэтому в момент увеличения скорости какой-либо точки сила инерции будет направлена в сторону, противоположную ее движению, а при замедле­нии — в сторону движения.

Рассмотрим две реки северного полушария (рис. 7).

Река 1 (например, Волга) течет с севера на юг. Частицы воды, перетекая из пункта / в пункт 2, будут переходить из области мень­ших скоростей V1 в область больших скоростей V2 кругового вращения точек земной поверхности. Скорости частицы водыо v1 и и v2 в соответст­вии с вращением Земли направлены в сторону левого берега. Следо­вательно, ускорение, равное величине V2—V1, направлено также в сторону левого берега, а сила инерции fi — в сторону правого берега. Тогда на частицу будут действовать две силы: сила тяжести G и сила инерции f1. Заменим эти две силы равнодействующей r1,. Уровень воды расположится по перпендикулярному направлению линии действия равнодействующей. В результате у правого берега уровень воды по­вышается, у левого — понижается.

Река 2 (например, Обь) течет с юга на север. Частицы воды, пере­текая из пункта 3 в пункт 4 , будут переходить из области больших скоростей vз кругового вращения точек земной поверхности в область меньших скоростей v4. Следовательно, ускорение будет направлено в сторону левого берега, а сила инерции, так же как и реки /, опять в сторону правого. Поэтому у правого берега уровень воды повышает­ся, а у левого — понижается (см. рис. 7).

Это позволяет сделать вывод о том, что независимо от географиче­ского направления течения, в результате вращения Земли поперечный уклон поверхности воды у рек северного полушария всегда направлен от правого берега к левому. Если продолжить рассуждения, то легко показать, что у рек южного полушария, независимо от направления течения, поперечный уклон поверхности воды направлен от левого берега к правому.

Обычно поперечный уклон, вызываемый вращением Земли, в сред­них широтах незначителен, в несколько раз меньше продольного.

Колебания уровня воды в реках - student2.ru

Например, по расчету у реки, имеющей ширину 1 км, скорость тече­ния 1 м/с на широте 60° (Ленинград), разность уровней у противопо­ложных берегов составит 1,3 см. Однако действуя многие тысячеле­тия, он оказывал большое влияние на формирование русла, постепен­но перемещая его в северном полушарии в сторону правого берега и в южном — в сторону левого. Вследствие этого у большинства рек северного полушария правый берег высокий (горный), а левый отло­гий (луговой). К числу таких рек относятся Днепр, Дон, Волга, Обь, Иртыш, Лена и др. Отсутствие у некоторых рек ярко выраженного пра­вого горного и левого отлогого берегов объясняется тем, что роль сил инерции в формировании русла значительно слабее, чем роль таких факторов, как ветер, геологическое строение Земли, уклон местности и т. д.

Поперечные уклоны могут возникать возле неровностей берега, на участках разделения русла, а также в периоды сильных ветров и при изменении ширины русла.

Навигационная опасность — это препятствие, опас­ное для плавания судна.

Навигационные опасности делятся на постоянные и временные. К первым относятся: габаритные размеры судового хода, недостаточные для свободного прохода судов; значительная извилистость русла;

сложная конфигурация дна и берегов; перекаты; наносные каменистые образования; отдельные элементы гидротехнических сооружений и др. К временным навигационным опасностям относятся: значительные ко­лебания уровней воды; сильные ветры, волнение, течения; туманы;

льды; неправильные течения; колебания течений и т. д.

Влияние опасности на плавание судов часто зависит от типа и раз­мера последних.

Судоводитель обязан знать виды, особенности и природу навига­ционных опасностей, чтобы правильно учитывать их при плавании.

ТЕЧЕНИЯ В РЕЧНОМ ПОТОКЕ

В речных руслах течение воды возникает в связи с продольным уклоном. Казалось бы, что под влиянием уклона скорость движения потока будет увеличиваться все больше и больше. Однако этого не происходит. Энергия речного потока расходуется на внутреннее тре­ние воды и на преодоление трения ее о дно и берега. Поэтому в целом ускорения движения воды в речном потоке не наблюдается, однако может возникнуть местное ускорение, например, на перекатах и поро­гах.

В природе различают два режима движения жидкости: ламинар­ное, (параллельно-струйчатое) и турбулентное (беспорядочно-вихре­вое).

При ламинарном режиме отдельные струйки воды движут­ся параллельно друг другу, не смешиваясь между собой. Скорости от­дельных частиц воды постоянны по величине и направлению. У стенок скорости равны нулю, затем они постепенно увеличиваются, достигая

Рис. 8. Внутренние течения на изгибах русла

Наибольшего значения в середине потока. В природе ламинарное те­чение встречается при движении воды по порам грунта. Оно возможно лишь при очень малых скоростях. Например, по расчетам, водный по­ток глубиной в 1 м при песчаном русле и температуре 20° С будет иметь ламинарное движение в том случае, если скорость не превышает 0,5 мм/с. При большей скорости движение воды будет турбулентным.

При турбулентном виде движения частички воды переме­щаются беспорядочно, постоянно перемешиваясь и образуя в отдель­ных случаях вихри. Скорость их непрерывно и мгновенно изменяется по величине и направлению (т. е. происходит пульсация скорости). В реках движение воды всегда турбулентное. Степень турбулентности, или интенсивность перемешивания масс воды речного потока, зависит от шероховатости русла и скорости течения. При неровном русле и большой скорости течения степень турбулентности выше, при отно­сительно ровном русле и небольшой скорости течения—ниже.

Скорость перехода одного движения в другое при данной глубине потока называется критической. При увеличении глубины кри­тическая скорость уменьшается. По данным М. А. Великанова, пере­ход ламинарного движения потока в турбулентное и обратно при глу­бинах 10, 100, 200 см происходит с критическими скоростями, равными соответственно 0,4; 0,04, 0,02 м/с.

Общее течение речного потока вдоль русла при своем движении видоизменяется, в нем создаются внутренние течения. Причинами воз­никновения таких течений являются изгибы русла, подъем и спад уров­ней, наличие в потоке слоев воды с разной температурой, вращение Земли, а также воздействие рельефа дна, ветра, сооружений и др.

Колебания уровня воды в реках - student2.ru

Под влиянием центробежной силы на изгибах русла образуется поверхностное течение, направленное от выпуклого берега к вогнутому, а у дна, наоборот, — от вогнутого к выпуклому (рис. 8). -За счет трения о дно скорость глубинного течения от вогнутого берега к выпуклому меньше по сравнению с поверхностным, поэтому у вы­пуклого берега происходит повышение уровня и создается попереч­ный уклон поверхности воды. На­пример, для реки, имеющей радиус кривизны 1000 м, скорость течения 1 м/с и глубину 5 м, скорость попе­речного поверхностного течения со­ставляет около 3,8 см/с, а у дна — 3,3 см/с. Взаимодействие продольно­го течения с поперечным придает По­току винтовой характер. Так как речное русло состоит из извилин, пе­реходящих одна в другую, направле­ние поперечного течения постоянно меняется.

Колебания уровня воды в реках - student2.ru Рис. 9. Внутренние течения при подъемах и спадах воды в русле

В результате вращения Земли в речных руслах возникает сила инерции, направленная к право­му берегу, и под действием этой силы

создается постоянное поперечное те­чение. Последнее направлено в по­верхностном слое к правому берегу, а в придонном — к левому. Скорости поперечных течений невелики. Напри­мер, для реки с глубиной 5 м и ско­ростью течения 1 м/с поперечные ско­рости у поверхности согласно расче­ту составляют около 0,25 и у дна — 0,23 см/с.

Взаимодействие продольного течения воды с поперечным также

придает потоку винтовой характер, но очень слабый.

Если направление поперечного течения на изгибах русла совпада­ет с направлением поперечного течения от вращения Земли, то вну­треннее винтовое течение усиливается, если же не совпадет — то уменьшается.

При подъемах воды возникают два винтовых течения, идущие от середины вверх, у поверхности — к берегам, а по дну — к середине (рис. 9).

При спаде воды наблюдаются обратные циркуляцион­ные течения.

Следует иметь в виду, что движение воды в речном потоке имеет более сложные формы по сравнению с описанными выше; внутренние течения постоянно видоизменяются, затухают и возникают вновь.

При турбулентном характере движения речного потока, как было уже указано, скорость каждой частички воды непрерывно меняется. Однако если в какой-либо точке потока прибором измерять пульсирую­щую скорость достаточно долго, то можно получить среднюю скорость в данной точке, имеющую определенную величину и направление.

Для представления о распределении скоростей течения в речном русле измеряют их осредненные значения и строят графики. Если измерить осредненные скорости течения в не­скольких точках, затем отложить их от прямой линии в соответствую­щем масштабе на чертеже в виде отрезков, то, соединив концы этих отрезков плавной кривой, получим график скоростей, называемый годографом или эпюрой скоростей.

Обычно эпюры скоростей строят по вертикали, живому сечению и в плане.

В открытых руслах средняя скорость по вертикали Одред (рис. 10, а) обычно находится на расстоянии 0,6 глубины h от поверх­ности. Наибольшая скорость по вертикали и дце располагается обыч­но несколько ниже поверхности, так как на скорость у поверхности Уцов влияют сила трения о воздух и поверхностное натяжение воды. Наименьшая скорость течения — у дна. Такое распределение скоростей течения по вертикали подвергается значительным изменениям под дей­ствием различных факторов. Например, при ветре, направление ко­торого совпадает с направлением течения, поверхностная скорость уве­личивается и наоборот. Неровности дна и водная растительность так-

Колебания уровня воды в реках - student2.ru

Рис. 10. Распределение скоростей течения по вертикали в открытом речном русле (о) и русле с ледяным покровом (б)

же вызывают перераспределение скоростей. В местах сжатия потока, например между устоями моста, скорости течения увеличиваются.

В период скорость течения вблизи ледяного покрова быва­ет такая же, как у дна, или меньше, а наибольшая скорость Vmax (рис. 10, б) находится на расстоянии 0,3—0,4 глубины русла.

Изотахи — линии равных скоростей — распределяются по живому сечению реки в соответствии с очертанием попереч­ного профиля русла. Для открытого русла изотахи имеют вид разом­кнутых кривых (рис. 11, а), для русла под ледяным покровом — зам­кнутых кривых (рис. 11,6).

Если определить средние скорости течения по вертикалям по всей ширине русла, затем отложить их в виде отрезков на плане реки или от горизонтальной линии вверх или вниз, то получится эпюра средних скоростей речного потока в плане (рис. 12). Такую эпюру можно построить и для наибольших скоростей. Обычно очертание эпюры по­добно очертанию живого сечения реки. Средние скорости течения уве­личиваются от берегов к середине русла. Местам с наибольшей глу­биной, как правило, соответствуют наибольшие скорости течения.

Линию, соединяющую точки с наибольшей скоростью течения в смежных живых сечениях русла, называют динамической осью речного потока. Наибольшие скорости течения рас­пределяются в живых сечениях весьма разнообразно, поэтому динами­ческая ось изгибается как в плане, так и по вертикали.

Колебания уровня воды в реках - student2.ru

Рис. 11. Распределение скоростей течения по живому сечению реки

Колебания уровня воды в реках - student2.ru

В судоводительской практике употребляется понятие стре­жень реки. Под ним подра­зумеваются места в реке с наиболь­шими глубиной и скоростями те­чения.

Обычно под скоростью течения речного потока понимают среднюю скорость по всему живому сече­нию. Зависимость скорости тече­ния от продольного уклона, глу­бины и шероховатости русла вы­ражается формулой Шези:

Колебания уровня воды в реках - student2.ru

Рис. 12. Распределение скоростей те­чения речного потока в плане

где См — коэффициент Шези (скоростной множитель);

ρ —гидравлический радиус, м. Представляет собой отношение живого се­чения русла со, м2, к его смоченному периметру (контуру) x, м;

l — поверхностный уклон.

Ширина реки значительно больше высоты берегов, поэтому вместо всего периметра x часто принимают только ширину реки В; при деле­нии к на В получают среднюю глубину hср. Следовательно, р~ hср.

Из уравнения (8) видно, что при увеличении уклона / увеличива­ется скорость течения и наоборот. При увеличении расхода воды Q увеличивается площадь живого сечения, а следовательно, и р w~ hср. Отсюда следует, что при увеличении глубины скорость течения увели­чивается, а при уменьшении — уменьшается.

Скоростной множитель См учитывает влияние шероховатости русла. Для ориентировочных расчетов его можно определить по формуле Базена:

Колебания уровня воды в реках - student2.ru

где у — коэффициент шероховатости, учитывающий состояние поверхности русла. Для земляных русл у= 1,3, для русла с крупногалечным дном y = 1,75, для пойм с растительностью у = 2 — 4 и т. д.

Таким образом, чем больше шероховатость русла, тем меньше Сд, и, как следует из формулы Шези, меньше средняя скорость течения.

Скорости течения, м/с (км/ч), на отдельных участках крупных рав­нинных рек характеризуются следующими ориентировочными дан­ными:

Свободный плес в половодье . . . . . . 1,5—2,0(5,4—7,2)

Свободный плес в межень ....... 0,25—0,4(0,9—1,14)

Перекаты с быстрым течением ..... 1,5—2,0(5,4—7,2)

Перекаты с тихим течением ...... 0,5—1,0(1,9—3,6)

Колебания уровня воды в реках - student2.ru

Тиховоды — медленные тече­ния, образующиеся за выпуклыми, бе­регами, крупными песчаными отложе­ниями в русле и т. п. При движении судна вверх для увеличения скоро­сти движения следуют по тиховоду.

Водоворот — постоянное вра­щательное движение воды в русле. Водовороты нередко создают глубо­кие ямы (омуты) и являются типич­ными для горных и полугорных рек.

Рис. 13. Суводь за рынком горы

Суводь — водное пространст­во с вращательным движением во­ды (рис. 13), обычно находящееся за выступами берегов, мысами, вы­пуклыми берегами, сильно вдающи­мися в русло. В этих местах тече­ние, с большой скоростью обтекая берег, встречает на своем пути выступ и создает перед ним подпор воды и повышение уровня. Проходя выступ, водный поток отклоняется от него и по инерции проходит не­которое расстояние. За выступом уровень воды понижен, из-за чего в низовой части суводи вода затягивается из основного потока, а в верх­ней части, наоборот, — из области суводи в основную струю потока. Этот процесс происходит непрерывно и вызывает вращательное дви­жение воды.

При вращении воды в суводи дно оказывает тормозящее действие. Вследствие этого ближе к поверхности суводи скорость вращения воды и центробежные силы увеличиваются. Под воздействием центробежных сил происходит большее отбрасывание воды от оси суводи у поверх­ности и меньшее — у дна. Снизу вверх вдоль оси суводи образуется восходящий поток, восполняющий отбрасываемую воду. Он размывает дно, захватывает продукты размыва, создавая воронкообразное углуб­ление дна.

При уменьшении скорости вода плавно обтекает выступ, образуя за ним тиховод.

У вогнутых берегов в крутых изгибах русла реки также образуют­ся суводи. В отличие от суводей, расположенных за выступами бере­гов, здесь нисходящие токи воды спускаются в центре суводи ко дну и растекаются в стороны. Этот тип суводи с отчетливо выраженной воронкой на поверхности воды иногда называется омутом.

Суводи у вогнутых берегов образуются, когда нарушается условие плавного обтекания берегов излучины. Это условие удовлетворяется,

если радиус кривизны излучены R более чем втрое превосходит ширину русла В, т. е. R/B> 3. При меньшем радиусе R у вогнутого берега

в вершине излучины, а также у выпуклого берега непосредственно ниже вершины возникают зоны резкого отклонения потока воды, в которых создаются суводи.

Колебания уровня воды в реках - student2.ru

Рис. 14. Прижимное течение на изгибе русла

Суводи могут существовать постоянно или возникать только в по­ловодье. На больших реках создаются крупные суводи, имеющие сферу действия десятки метров и скорость вращения воды в цен­тральной части — несколько метров в секунду.

В некоторых бассейнах суводь имеет свое местное название, напри­мер на Енисее—улово, на Иртыше—заводь.

Суводи представляют серьезное затруднение для судоходства. Суда в них теряют управление, резко смещаются в сторону берега, при этом нередко рвутся счалы и буксиры, ломаются рули и т. п.

Майданы — это беспорядочное вращательное движение воды в виде подвижных вихрей размером от нескольких сантиметров до нескольких метров в поперечнике. Майданы образуются над крупными подводными предметами при небольшой глубине над ними, а также во время паводка в тех местах, где идущий через пойму поток встре­чается под углом с другим потоком, идущим по меженному руслу. Кроме того, майданы возникают при интенсивных местных переформи­рованиях русла и на перекатах, при резких изменениях формы дна и т. д. Майданы неблагоприятны для судо­ходства, так как вызывают рыскли­вость судов.

Спорные воды — это май­даны, образующиеся у устьев при­токов и при слиянии рукавов. Чем ближе угол встречи к прямому, тем сильнее развиваются вихри, которые в поперечнике достигают нескольких метров.

Рис. 15. Свальное течение на пе­рекате

Колебания уровня воды в реках - student2.ru

Прижимное течение создается у берега на участках ре­ки, где слив воды направлен к бе­регу. Например, на закруглениях русла прижимное течение возникает у вогнутого берега, так как вода вследствие инерции стремится сохранить прежнее прямолинейное на­правление, но, встречая на своем пути препятствие в виде вогнутого берега, прижимается к нему (рис. 14). На участках с прижимным тече­нием происходит раскат судов в сторону берега.

Рис. 16. Затяжное течение-у протоки
Колебания уровня воды в реках - student2.ru Свальные течения — это слив воды (рис. 15, стрелки), направленный под углом к-судовому ходу (штрих-пунктир). Сваль­ные течения возникают из-за разности в уровнях воды по шири­не реки. На перекатах такие течения создаются в результате подпора потока седловиной переката, поэтому они направлены из верхней плесовой лощины в затонную емкость нижней плесовой лощины. Смещая суда с оси судового хода, свальные течения могут вызвать навал су­дов и плотов на отмели, опоры мостов и т. п.

Затяжные течения возникают у входов в протоки (рис. 16). Особенно сильны затяжные течения во время половодий, когда расход воды в протоках значительно возрастает . Затяжные течения могут вызвать навал судна на остров.

На характер течения влияют также мосты,, подъездные дамбы, пло­тины, сооружения в русле и др.

НАНОСНЫЕ И КАМЕНИСТЫЕ ОБРАЗОВАНИЯ В РЕЧНОМ РУСЛЕ

Наносы — это твердые частицы, образованные в результате эрозии водосборов и русл, а также берегов водоемов, переноси­мые водотоками, течениями в озерах, морях и водохранилищах и формирующие их ложе. Наносы могут быть двух видов: взвешенные и влекомые.

Взвешенные наносы — наносы, переносимые водным потоком во взвешенном состоянии.

Влекомые наносы — наносы, перемещаемые водным по­током в придонном слое и движущиеся путем скольжения, перекатывания или сальтации (сальтация — перебрасывание наносов на корот­кие расстояния в придонном слое водного потока).

Донные наносы — наносы, формирующие речное русло, пойму или ложе водоема и находящиеся во взаимодействии с водными массами.

Во время движения частицы наносов постоянно переходят из вле­комого состояния во взвешенное и обратно. Взвешенные наносы рас­пределяются в живом сечении очень неравномерно, влекомые же еще более неравномерно, часто они движутся по дну узкими полосами.

Перемещение наносов во взвешенном со­стоянии происходит таким образом. Содержание в потоке во взве­шенном состоянии частиц наносов более тяжелых, чем вода, объясняет­ся следующим. Частица наносов, попав в спокойную воду, будет падать равноускоренно. Сила сопротивления воды растет с увеличением ско­рости падения частицы, а масса частицы постоянна, поэтому с момен­та, когда движущая сила и сила сопротивления воды сравняются, частица будет падать равномерно. Например, скорость падения в воде даже глыб диаметром 1 м к концу третьей секунды cтановится равно­мерной. Мелкие же частицы практически сразу будут приобретать рав­номерную скорость падения.

Скорость равномерного падения твердых частиц в неподвижной воде называют гидравлической крупностью.

В турбулентном потоке, как известно, скорость движения частиц воды изменяется по величине и направлению. В каждой точке потока имеются мгновенные составляющие скорости, направленные вертикаль­но вверх или вниз. Опыты установили, что вертикальная скорость в среднем составляет 1/12—1/20 горизонтальной.

Если частица наносов, содержащаяся в массе воды, падает равно­мерно и скорость опускания частицы меньше или равна вертикальной составляющей скорости потока, направленной вверх, то эта масса бу­дет способна перемещать частицу во взвешенном состоянии. Если ско­рость опускания больше вертикальной составляющей скорости, то частица будет опускаться на дно.

В процессе падения частица может опуститься до дна и смещаться с донными наносами, оставаясь здесь до тех пор, когда над ней вновь возникнет достаточно мощный вихрь, который опять увлечет ее в тол­щу потока. Поэтому распределение взвешенных наносов в потоке за­висит от степени его турбулентности, которая растет при увеличении скорости течения.

С увеличением скорости течения количество взвешенных наносов увеличивается и они распределяются по глубине потока более равно­мерно.

Рис. 17. К перемещению влекомых наносов  
 
  Колебания уровня воды в реках - student2.ru

Перемещение наносов во влекомом состоянии можно представить себе так. Поток, обтекая отдельно лежащую частицу нано­сов, оказывает на нее гидравлическое давление F (рис. 17). Это дав­ление может быть разложено на две составляющие: сдвигающую силу Fc, параллельную дну, и подъемную силу Гц, направленную вверх. Достаточно частице под действием подъемной силы немного приподнять­ся одним краем, как в результате увеличения площади, на которую воздействует поток, подъемная си­ла резко возрастает.

Если подъемная сила меньше веса частицы в воде, то под дейст­вием сдвигающей силы /частица бу­дет перекатываться. Если подъем­ная сила больше веса частицы, то последняя оторвется от дна. У ча­стицы в потоке, при условии ее полного обтекания водой, подъем­ная сила исчезнет. Если частица не будет подхвачена восходящей

струёй, то упадет на дно, где опять возникнет подъемная сила, и т. д. Так возникают «скачки» частиц. Скольжение частиц по дну наблюдается редко.

При скорости, меньшей 0,20—0,25 м/с, наносы обычно не двигают­ся. Движение частицы определенного диаметра зависит от глубины и скорости течения. Так, частицы диаметром 1 мм на глубине 1 м начи­нают двигаться, если средняя скорость течения достигнет 0,5 м/с, на глубине Зм — если она будет 0,75 м/с. Таким образом, при больших глубинах воды в русле для сдвига частицы требуется большая скорость течения и наоборот.

Реки обладают большой энергией, которая зависит от массы дви­жущейся воды и ее скорости. Большая часть энергии речного потока расходуется на размыв русла, трение частиц жидкости между собой и о дно, взвешивание твердых частиц и на их истирание при перекаты­вании по дну.

Зависимость веса Р влекомой частицы от скорости течения опреде­ляется законом Эри:

Колебания уровня воды в реках - student2.ru

где А — коэффициент, зависящий от формы и материала твердой частицы;

v — скорость, при которой частица начинает двигаться.

Закон Эри говорит о том, что вес влекомой частицы пропорционален шестой степени скорости, действующей на частицу, т. е. если скорость увеличится вдвое, вес передвигаемой частицы — в 64 раза, если вчет­веро — в 4096 раз и т. д. Из этого становится ясной причина переноса горными реками крупных камней.

Содержание взвешенных наносов в потоке оценивается мутно­стью воды, которой считается весовое содержание взвешенных наносов в единице объема смеси воды с наносами.

Перемещение наносов в процессе поверхностного стока называют стоком наносов, а количество наносов, проносимое через живое сечение потока в единицу времени, — расходом нано­сов.

Расход за год или месяц называется соответственно годовым или месячным стоком наносов.

Сток наносов больших рек измеряется миллионами тонн. Реки ежегодно выносят к устьям около 3 млрд. т наносов. Сток взвешенных наносов рек почти равен их общему твердому стоку, количество влекомых наносов составляет l—5% взвешенных. Это объясняется тем, что влекомые наносы совершают преимущественно небольшие перемещения — из одних участков русла в другие, а поэтому их доля в транзитном твердом стоке мала. В то же время объем влекомых на­носов в пределах участков русла чрезвычайно велик.

Большая часть стока наносов равнинных рек, составляющая 50— 90% годового, приходится на время весенних половодий и паводков.

Количество наносов в потоке определяют при помощи специальных приборов (батометров).

К наносным образованиям в русле относятся песчаные гряды, за­струги, косы, побочни, высыпки, осередки.

Песчаные гряды — основной вид наносного образования в русле. Из-за гряд песчаное дно реки — неровное, волнообразное. Наблюдения над песчаными грядами позволили установить наиболее вероятную причину их образования. При турбулентном движении по­тока в различных его местах скорости снижаются, в результате про­исходит беспорядочное отложение наносов, из которых под воздейст­вием течения начинается формирование гряды. Гряды обычно имеют форму чешуек, складывающихся в параллельные ряды. У каждой гря­ды / (рис. 18, а) отлогий напорный 2 и крутой тыловой 4 скаты. На тыловых скатах 4 образуется вращательное движение воды 5.

Наносы, влекомые течением, взбегают на валик из наносов и, преодолевая гребень 3, вращательным движением воды подтягивают­ся к скату, наращивая его в высоту и придавая ему крутую форму. В результате этого через некоторое время образуется гряда, у которой верхний скат пологий, а нижний — крутой и короткий. Такими гряда­ми вскоре покрывается все дно реки.1

Размер гряд зависит от формы русла, глубины и скорости течения. Высота их пропорциональна глубине потока. Поэтому гряды на пле­сах выше, чем на перекатах. При повышении уровня воды гряды ста­новятся более высокими. При понижении уровня воды высота] их уменьшается, однако значительно медленнее.

Рис. 18. Песчаные гряды в русле:

а—продольный профиль русла;

б— русло в плане

 
  Колебания уровня воды в реках - student2.ru

При большой скорости течения воды частицы, срываясь с гребня, переходят во взвешенное состояние. В этом случае рост гряды останавли­вается. При дальнейшем увеличении скорости течения гряды размываются и исчезают. Длина сформировавшей­ся гряды может соответствовать де­сяти—двадцати глубинами потока и более. На реках с большой подвиж­ностью влекомых наносов во время паводков наблюдаются гряды и боль­шей длины—примерно до ста. глубин русла. т.е. равной почти ширине русла.

Гряды двигаются вниз по течению. Это объясняется тем, что части­ца наносов лобового ската перемещается течением до гребня гряды и, перевалив его, попадает на ее тыловой скат, засыпается там сле­дующими за ней частицами и остается в теле гряды, пока она не про­двинется настолько, что частица вновь окажется на поверхности напор­ного ската. Такое перемещение последовательно совершают все части­цы, слагающие гряду.

Абсолютная скорость перемещения гряды обычно в сотни раз мень­ше скорости потока. Скорость перемещения крупных гряд на больших реках достигает нескольких метров в сутки. Скорость движения гряд увеличивается с ростом скорости потока.

Заструги — это скопление наносов в русле реки в форме круп­ных гряд, примыкающих к песчаному берегу. На рис. 18, б схематично показаны заструги в плане. У заструги 6 ее конец 7 называют ухвостьем, а понижение дна 8 между застругами— подзастружной ямой.

Размеры заструг зависят от формы русла, глубины и скорости те­чения. Иногда крупные заструги тянутся до противоположного берега. Высота заструг на больших реках достигает 1—2 м. Закономерности роста и перемещения заструг такие же, как у гряд.

Над застругами обычно неровное течение, вызывающее рыскливость судов. При больших скоростях течения заструги размываются. По­этому заструги, тянущиеся от песков, доходя до приглубого берега, где обычно большая скорость течения, срезаются.

Косы — представляют собой невысокие песчаные отмели, вдаю­щиеся в русло длинным клином 3 (рис. 19). На реках косы примыкают обычно к выпуклым песчаным берегам.

Рис. 19. Косы в речном русле

 
  Колебания уровня воды в реках - student2.ru

осы образуются из крупных заструг в резу

Наши рекомендации